Global solutions to the 3D incompressible nematic liquid crystal system

被引:14
作者
Liu, Qiao [1 ]
Zhang, Ting [2 ]
Zhao, Jihong [3 ]
机构
[1] Hunan Normal Univ, Dept Math, Changsha 410081, Hunan, Peoples R China
[2] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
[3] Northwest A&F Univ, Coll Sci, Yangling 712100, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Nematic liquid crystal flows; Navier-Stokes equations; Global well-posedness; WELL-POSEDNESS; HARMONIC MAPS; HEAT-FLOW; BLOW-UP; STOKES; CRITERION;
D O I
10.1016/j.jde.2014.11.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider the global well-posedness of the Cauchy problem of the 3D incompressible 3 nematic liquid crystal system with initial data in the critical Besov space B-1/2 (2,1)(R-3) x B-3/2 (2,1) (R-3). In particular, we prove that there exists a positive constant C-0 such that the nematic liquid crystal system has a unique global solution with initial data (u(0), d(0)) = (u(0)(h), u(0)(3) d(0)) which satisfies ((1 + 1/v mu)parallel to d(o) - (d) over bar (0) parallel to B-3/2 (2,1) + 1/v parallel to u(0)(h)parallel to B-1/2 (2,1) ) exp{c(0)/v(2) (parallel to u(0)(3)parallel to B-1/2 (2,1) + 1/mu)(2)}<= c(0) for some c(0) sufficiently small, where (d) over bar (0) is a constant vector with vertical bar(d) over bar (0)vertical bar = 1. Here v and mu are two positive viscosity constants. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:1519 / 1547
页数:29
相关论文
共 32 条
[1]  
Bahouri H., 2011, GRUNDLEHREN MATH WIS, V343
[2]  
Cannone M., 1993, SEM EQ DER PART EC P
[3]  
CHANG KC, 1992, J DIFFER GEOM, V36, P507
[4]   On the global wellposedness to the 3-D incompressible anisotropic Navier- Stokes equations [J].
Chemin, Jean-Yves ;
Zhang, Ping .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2007, 272 (02) :529-566
[5]   FLOW OF NON-LIPSCHITZ VECTOR-FIELDS AND NAVIER-STOKES EQUATIONS [J].
CHEMIN, JY ;
LERNER, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 121 (02) :314-328
[6]  
Chemin JY, 1999, J ANAL MATH, V77, P27, DOI 10.1007/BF02791256
[7]  
ERICKSEN JL, 1962, ARCH RATION MECH AN, V9, P371
[8]   ON THE NAVIER-STOKES INITIAL VALUE PROBLEM .1. [J].
FUJITA, H ;
KATO, T .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1964, 16 (04) :269-315
[9]   Stability to the global large solutions of 3-D Navier-Stokes equations [J].
Gui, Guilong ;
Zhang, Ping .
ADVANCES IN MATHEMATICS, 2010, 225 (03) :1248-1284
[10]  
Hao Y, 2013, ARXIV13051395V1MATHA