Magnetoresistive random access memory using magnetic tunnel junctions

被引:322
作者
Tehrani, S
Slaughter, JM
Deherrera, M
Engel, BN
Rizzo, ND
Salter, J
Durlam, M
Dave, RW
Janesky, J
Butcher, B
Smith, K
Grynkewich, G
机构
[1] Motorola Semicond Prod Sector, Embedded Memory Ctr, Tempe, AZ 85284 USA
[2] Motorola Labs, Phys Sci Res Labs, Tempe, AZ 85284 USA
关键词
magnetic switching; magnetic tunnel junction (MTJ); magnetoresistive random access memory (MRAM); micromagnetics; nonvolatile memory; tunneling magnetoresistance; ENHANCED MAGNETORESISTANCE; REVERSAL; VORTICES; STATES;
D O I
10.1109/JPROC.2003.811804
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Magnetoresistive random access memory (MRAM) technology combines a spintronic device with standard silicon-based microelectronics to obtain a combination of attributes not found in any other memory technology. Key attributes of MRAM technology are nonvolatility and unlimited read and write endurance. Magnetic tunnel junction (MTJ) devices have several advantages over other magnetoresistive devices for use in MRAM cells, such as a large signal for the read operation and a resistance that can be tailored to the circuit. Due to these attributes, MTJ MRAM can operate at high speed and is expected to have competitive densities when commercialized. In this paper we review our recent progress in the development of MTJ-MRAM technology. We describe how the memory operates. including significant aspects of reading, writing, and integration of the magnetic material with CMOS, which enabled our recent demonstration of a 1-Mbit memory chip. Important memory attributes are. compared between MRAM and other memory technologies.
引用
收藏
页码:703 / 714
页数:12
相关论文
共 43 条
[1]   GIANT MAGNETORESISTANCE OF (001)FE/(001) CR MAGNETIC SUPERLATTICES [J].
BAIBICH, MN ;
BROTO, JM ;
FERT, A ;
VANDAU, FN ;
PETROFF, F ;
EITENNE, P ;
CREUZET, G ;
FRIEDERICH, A ;
CHAZELAS, J .
PHYSICAL REVIEW LETTERS, 1988, 61 (21) :2472-2475
[2]   FABRICATION AND CHARACTERIZATION OF A CROSSTIE RANDOM-ACCESS MEMORY [J].
BAUGH, CW ;
CULLOM, JH ;
HUBBARD, EA ;
MENTZER, MA ;
FEDORAK, R .
IEEE TRANSACTIONS ON MAGNETICS, 1982, 18 (06) :1782-1784
[3]   ENHANCED MAGNETORESISTANCE IN LAYERED MAGNETIC-STRUCTURES WITH ANTIFERROMAGNETIC INTERLAYER EXCHANGE [J].
BINASCH, G ;
GRUNBERG, P ;
SAURENBACH, F ;
ZINN, W .
PHYSICAL REVIEW B, 1989, 39 (07) :4828-4830
[4]   THERMAL FLUCTUATIONS OF A SINGLE-DOMAIN PARTICLE [J].
BROWN, WF .
PHYSICAL REVIEW, 1963, 130 (05) :1677-+
[5]   Comparison of oxidation methods for magnetic tunnel junction material [J].
Chen, EY ;
Whig, R ;
Slaughter, JM ;
Cronk, D ;
Goggin, J ;
Steiner, G ;
Tehrani, S .
JOURNAL OF APPLIED PHYSICS, 2000, 87 (09) :6061-6063
[6]   MAGNETORESISTIVE MEMORY TECHNOLOGY [J].
DAUGHTON, JM .
THIN SOLID FILMS, 1992, 216 (01) :162-168
[7]   Inverse tunnel magnetoresistance in Co/SrTiO3/La0.7Sr0.3MnO3:: New ideas on spin-polarized tunneling [J].
De Teresa, JM ;
Barthélémy, A ;
Fert, A ;
Contour, JP ;
Lyonnet, R ;
Montaigne, F ;
Seneor, P ;
Vaurès, A .
PHYSICAL REVIEW LETTERS, 1999, 82 (21) :4288-4291
[8]  
DURLAM M, IN PRESS LOW POWER I
[9]   The science and technology of magnetoresistive tunneling memory [J].
Engel, BN ;
Rizzo, ND ;
Janesky, J ;
Slaughter, JM ;
Dave, R ;
DeHerrera, M ;
Durlam, M ;
Tehrani, S .
IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2002, 1 (01) :32-38
[10]   Microstructured magnetic tunnel junctions [J].
Gallagher, WJ ;
Parkin, SSP ;
Lu, Y ;
Bian, XP ;
Marley, A ;
Roche, KP ;
Altman, RA ;
Rishton, SA ;
Jahnes, C ;
Shaw, TM ;
Xiao, G .
JOURNAL OF APPLIED PHYSICS, 1997, 81 (08) :3741-3746