Enhancing the sensitivity and selectivity of pyrene-based sensors for detection of small gaseous molecules via destructive quantum interference

被引:5
作者
Sengul, Ozlem [1 ]
Voelkle, Julia [2 ,3 ]
Valli, Angelo [1 ]
Stadler, Robert [1 ]
机构
[1] Vienna Univ Technol, Inst Theoret Phys, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
[2] Univ Vienna, Dept Phys Chem, Wahringer Str 42, A-1090 Vienna, Austria
[3] Ctr Electrochem Surface Technol, Viktor Kaplan Str 2, A-2700 Wiener Neustadt, Austria
基金
奥地利科学基金会;
关键词
STATE GAS SENSORS; GRAPHENE NANORIBBON; TRANSMISSION; MODULATION; TRANSPORT; JUNCTIONS; CURRENTS;
D O I
10.1103/PhysRevB.105.165428
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Graphene-based sensors are exceptionally sensitive with high carrier mobility and low intrinsic noise, and have been intensively investigated in the past decade. The detection of individual gas molecules has been reported, albeit the underlying sensing mechanism is not yet well understood. We focus on the adsorption of NO2, H2O, and NH3 on a molecular junction with a pyrene core, which can be considered as a minimal graphenelike unit. We systematically investigate the chemiresistive response within the framework of density functional theory and nonequilibrium Greens functions. We highlight the fundamental role of quantum interference (QI) in the sensing process, and we propose it as a paradigmatic mechanism for sensing. Owing to the open-shell character of NO2, its interaction with pyrene gives rise to a Fano resonance thereby triggering the strongest chemiresistive response, while the weaker interactions with H2O and NH3 result in lower sensitivity. We demonstrate that by exploiting destructive QI arising in the meta-substituted pyrene, it is possible to calibrate the sensor to enhance both its sensitivity and chemical selectivity by almost two orders of magnitude so that individual molecules can be detected and distinguished. These results provide a fundamental strategy to design high-performance chemical sensors with graphene functional blocks.
引用
收藏
页数:9
相关论文
共 77 条
[1]   Functionalized Graphene Surfaces for Selective Gas Sensing [J].
Alzate-Carvajal, Natalia ;
Luican-Mayer, Adina .
ACS OMEGA, 2020, 5 (34) :21320-21329
[2]   Gas sensing with self-assembled monolayer field-effect transistors [J].
Andringa, Anne-Marije ;
Spijkman, Mark-Jan ;
Smits, Edsger C. P. ;
Mathijssen, Simon G. J. ;
van Hal, Paul A. ;
Setayesh, Sepas ;
Willard, Nico P. ;
Borshchev, Oleg V. ;
Ponomarenko, Sergei A. ;
Blom, Paul W. M. ;
de Leeuw, Dago M. .
ORGANIC ELECTRONICS, 2010, 11 (05) :895-898
[3]   SOLID-STATE GAS SENSORS - A REVIEW [J].
AZAD, AM ;
AKBAR, SA ;
MHAISALKAR, SG ;
BIRKEFELD, LD ;
GOTO, KS .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1992, 139 (12) :3690-3704
[4]   Graphene on ferromagnetic surfaces and its functionalization with water and ammonia [J].
Boettcher, Stefan ;
Weser, Martin ;
Dedkov, Yuriy S. ;
Horn, Karsten ;
Voloshina, Elena N. ;
Paulus, Beate .
NANOSCALE RESEARCH LETTERS, 2011, 6
[5]   Density-functional method for nonequilibrium electron transport -: art. no. 165401 [J].
Brandbyge, M ;
Mozos, JL ;
Ordejón, P ;
Taylor, J ;
Stokbro, K .
PHYSICAL REVIEW B, 2002, 65 (16) :1654011-16540117
[6]   Frontiers of graphene and 2D material-based gas sensors for environmental monitoring [J].
Buckley, David J. ;
Black, Nicola C. G. ;
Castanon, Eli G. ;
Melios, Christos ;
Hardman, Melanie ;
Kazakova, Olga .
2D MATERIALS, 2020, 7 (03)
[7]   Atomically precise bottom-up fabrication of graphene nanoribbons [J].
Cai, Jinming ;
Ruffieux, Pascal ;
Jaafar, Rached ;
Bieri, Marco ;
Braun, Thomas ;
Blankenburg, Stephan ;
Muoth, Matthias ;
Seitsonen, Ari P. ;
Saleh, Moussa ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
NATURE, 2010, 466 (7305) :470-473
[8]   Mechanically controlled quantum interference in graphene break junctions [J].
Caneva, Sabina ;
Gehring, Pascal ;
Garcia-Suarez, Victor M. ;
Garcia-Fuente, Amador ;
Stefani, Davide ;
Olavarria-Contreras, Ignacio J. ;
Ferrer, Jaime ;
Dekker, Cees ;
van der Zant, Herre S. J. .
NATURE NANOTECHNOLOGY, 2018, 13 (12) :1126-+
[9]  
Capone S, 2003, J OPTOELECTRON ADV M, V5, P1335
[10]  
Chen YC, 2015, NAT NANOTECHNOL, V10, P156, DOI [10.1038/NNANO.2014.307, 10.1038/nnano.2014.307]