On Designs and Multiplier Groups Constructed from Almost Perfect Nonlinear Functions

被引:0
作者
Edel, Yves [1 ]
Pott, Alexander [2 ]
机构
[1] Univ Ghent, Dept Pure Math & Comp Algebra, Krijgslaan 281 S22, B-9000 Ghent, Belgium
[2] Otto Von Guericke Univ, Dept Matemat, Magdeburg, Germany
来源
CRYPTOGRAPHY AND CODING, PROCEEDINGS | 2009年 / 5921卷
关键词
DIFFERENCE SETS; BENT FUNCTIONS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let f : F-2(n) -> F-2(n) be an almost perfect nonlinear function (APN). The set D-f := {(a, b) : f(x + a) - f(x) = b has two solutions} can be used to distinguish APN functions up to equivalence. We investigate the multiplier groups of theses sets D-f. This extends earlier work done by the authors [1].
引用
收藏
页码:383 / +
页数:4
相关论文
共 29 条
[21]  
JANWA H, 1993, LECT NOTES COMPUTER, V673, P180, DOI DOI 10.1007/3-540-56686-4_43
[22]   APN monomials over GF(2n) for infinitely many n [J].
Jedlicka, David .
FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (04) :1006-1028
[23]   WEIGHT ENUMERATORS FOR SEVERAL CLASSES OF SUBCODES OF 2ND ORDER BINARY REED-MULLER CODES [J].
KASAMI, T .
INFORMATION AND CONTROL, 1971, 18 (04) :369-&
[24]   Crooked maps in F2n [J].
Kyureghyan, Gohar M. .
FINITE FIELDS AND THEIR APPLICATIONS, 2007, 13 (03) :713-726
[25]  
MACWILLIAMS FJ, 1977, TTHEORY ERROR CORREC, V2, P16
[26]  
MCFARLAND RL, 1989, MITT MATH SEM GIESSE, pR1
[27]  
Preneel B, 1993, Analysis and design of cryptographic hash functions
[28]   BENT FUNCTIONS [J].
ROTHAUS, OS .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1976, 20 (03) :300-305
[29]  
[No title captured]