On Designs and Multiplier Groups Constructed from Almost Perfect Nonlinear Functions

被引:0
作者
Edel, Yves [1 ]
Pott, Alexander [2 ]
机构
[1] Univ Ghent, Dept Pure Math & Comp Algebra, Krijgslaan 281 S22, B-9000 Ghent, Belgium
[2] Otto Von Guericke Univ, Dept Matemat, Magdeburg, Germany
来源
CRYPTOGRAPHY AND CODING, PROCEEDINGS | 2009年 / 5921卷
关键词
DIFFERENCE SETS; BENT FUNCTIONS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Let f : F-2(n) -> F-2(n) be an almost perfect nonlinear function (APN). The set D-f := {(a, b) : f(x + a) - f(x) = b has two solutions} can be used to distinguish APN functions up to equivalence. We investigate the multiplier groups of theses sets D-f. This extends earlier work done by the authors [1].
引用
收藏
页码:383 / +
页数:4
相关论文
共 29 条
[1]  
[Anonymous], BOOLEAN MET IN PRESS
[2]  
BENDING T, 1998, ELECTRON J COMB, V5, P14
[3]  
Beth T., 1999, Design Theory
[4]   Crooked binomials [J].
Bierbrauer, Juergen ;
Kyureghyan, Gohar M. .
DESIGNS CODES AND CRYPTOGRAPHY, 2008, 46 (03) :269-301
[5]   The Magma algebra system .1. The user language [J].
Bosma, W ;
Cannon, J ;
Playoust, C .
JOURNAL OF SYMBOLIC COMPUTATION, 1997, 24 (3-4) :235-265
[6]   On the classification of APN functions up to dimension five [J].
Brinkmann, Marcus ;
Leander, Gregor .
DESIGNS CODES AND CRYPTOGRAPHY, 2008, 49 (1-3) :273-288
[7]  
BROWNING K, 2008, APN POLYNOMIAL UNPUB
[8]   New classes of almost bent and almost perfect nonlinear polynomials [J].
Budaghyan, L ;
Carlet, C ;
Pott, A .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2006, 52 (03) :1141-1152
[9]  
BUDAGHYAN L, 2008, INT C BOOL IN PRESS
[10]   Codes, Bent Functions and Permutations Suitable for DES-like Cryptosystems [J].
Carlet C. ;
Charpin P. ;
Zinoviev V. .
Designs, Codes and Cryptography, 1998, 15 (2) :125-156