Predicting Drug-Target Interactions Using Weisfeiler-Lehman Neural Network

被引:5
|
作者
Manoochehri, Hafez Eslami [1 ]
Kadiyala, Susmitha Sri [1 ]
Nourani, Mehrdad [1 ]
机构
[1] Univ Texas Dallas, Dept Elect & Comp Engn, Predict Analyt & Technol Lab, Richardson, TX 75083 USA
关键词
Drug-Target Interaction; Link Prediction; Neural Network;
D O I
10.1109/bhi.2019.8834572
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Predicting missing drug-target relationships can help to speed up the process of identifying unknown interactions between chemical drugs and target proteins in pharmaceutical research. In this paper we employ Weisfeiler-Lehman Neural Network method to capture features, purely based on topological network and learn the pattern of drug-target interactions. We show our approach is able to learn sophisticated drug-target topological features and outperform other similarity based methods in terms of AUROC.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Predicting Organic Reaction Outcomes with Weisfeiler-Lehman Network
    Jin, Wengong
    Coley, Connor W.
    Barzilay, Regina
    Jaakkola, Tommi
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [2] Weisfeiler-Lehman Neural Machine for Link Prediction
    Zhang, Muhan
    Chen, Yixin
    KDD'17: PROCEEDINGS OF THE 23RD ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2017, : 575 - 583
  • [3] Overfit deep neural network for predicting drug-target interactions
    Xiao, Xiaolin
    Liu, Xiaozhi
    He, Guoping
    Liu, Hongwei
    Guo, Jinkuo
    Bian, Xiyun
    Tian, Zhen
    Ma, Xiaofang
    Li, Yanxia
    Xue, Na
    Zhang, Chunyan
    Gao, Rui
    Wang, Kuan
    Zhang, Cheng
    Wang, Cuancuan
    Liu, Mingyong
    Du, Xinping
    ISCIENCE, 2023, 26 (09)
  • [4] Beyond Weisfeiler-Lehman with Local Ego-Network Encodings
    Alvarez-Gonzalez, Nurudin
    Kaltenbrunner, Andreas
    Gomez, Vicenc
    MACHINE LEARNING AND KNOWLEDGE EXTRACTION, 2023, 5 (04): : 1234 - 1265
  • [5] Deep Attributed Network Embedding via Weisfeiler-Lehman and Autoencoder
    Al-Furas, Amr Thabit
    Alrahmawy, Mohammed F.
    Al-Adrousy, Waleed Mohamed
    Elmougy, Samir
    IEEE ACCESS, 2022, 10 : 61342 - 61353
  • [6] Predicting Drug-Target Interactions Using Drug-Drug Interactions
    Kim, Shinhyuk
    Jin, Daeyong
    Lee, Hyunju
    PLOS ONE, 2013, 8 (11):
  • [7] Extending the Design Space of Graph Neural Networks by Rethinking Folklore Weisfeiler-Lehman
    Feng, Jiarui
    Kong, Lecheng
    Liu, Hao
    Tao, Dacheng
    Li, Fuhai
    Zhang, Muhan
    Chen, Yixin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [8] Graph neural network approaches for drug-target interactions
    Zhang, Zehong
    Chen, Lifan
    Zhong, Feisheng
    Wang, Dingyan
    Jiang, Jiaxin
    Zhang, Sulin
    Jiang, Hualiang
    Zheng, Mingyue
    Li, Xutong
    CURRENT OPINION IN STRUCTURAL BIOLOGY, 2022, 73
  • [9] Predicting Drug-Target Interactions Via Dual-Stream Graph Neural Network
    Li, Yuhui
    Liang, Wei
    Peng, Li
    Zhang, Dafang
    Yang, Cheng
    Li, Kuan-Ching
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2024, 21 (04) : 948 - 958
  • [10] Graph Convolutional Neural Networks for Predicting Drug-Target Interactions
    Torng, Wen
    Altman, Russ B.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2019, 59 (10) : 4131 - 4149