REACTIVE MOLECULAR DYNAMICS SIMULATION OF GRAPHENE-BASED NANOMATERIALS PRODUCED BY CONFINED HEATING OF POLYMER

被引:0
作者
Dong, Yuan [1 ]
Lin, Jian [1 ]
机构
[1] Univ Missouri, Dept Mech & Aerosp Engn, Columbia, MO 65201 USA
来源
PROCEEDINGS OF THE ASME 5TH INTERNATIONAL CONFERENCE ON MICRO/NANOSCALE HEAT AND MASS TRANSFER, 2016, VOL 2 | 2016年
关键词
FORCE-FIELD; RESIN CARBONIZATION; LARGE-AREA; REAXFF; PHASE; FILMS; GRAPHITE; EXFOLIATION; INITIATION; OXIDATION;
D O I
暂无
中图分类号
O414.1 [热力学];
学科分类号
摘要
The graphene-based nanomaterial has great potential as catalyst and supercapacitors. In this paper we study the pyrolysis of polymers in a nanosecond time scale with the reactive molecular dynamics (MD) simulations using ReaxFF potential. It is found that the confined heating will produce graphene-like nanostructures out of two kinds of polymers: polyimide and polyether ether ketone. The peak pressure achieves above 3GPa with a processing temperature of 3000K. It indicates that the local high temperature and pressure can convert polymer to graphene-based nanomaterials without metal catalyst, which may enable large scale production of high performance electrical devices and microreactors with laser scribing method.
引用
收藏
页数:6
相关论文
共 35 条
[1]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/NNANO.2010.132, 10.1038/nnano.2010.132]
[2]   ReaxFF reactive force field for molecular dynamics simulations of hydrocarbon oxidation [J].
Chenoweth, Kimberly ;
van Duin, Adri C. T. ;
Goddard, William A., III .
JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (05) :1040-1053
[3]   Initiation Mechanisms and Kinetics of Pyrolysis and Combustion of JP-10 Hydrocarbon Jet Fuel [J].
Chenoweth, Kimberly ;
van Duin, Adri C. T. ;
Dasgupta, Siddharth ;
Goddard, William A., III .
JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (09) :1740-1746
[4]   The chemistry of graphene oxide [J].
Dreyer, Daniel R. ;
Park, Sungjin ;
Bielawski, Christopher W. ;
Ruoff, Rodney S. .
CHEMICAL SOCIETY REVIEWS, 2010, 39 (01) :228-240
[5]   Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage [J].
El-Kady, Maher F. ;
Kaner, Richard B. .
NATURE COMMUNICATIONS, 2013, 4
[6]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[7]   High-yield production of graphene by liquid-phase exfoliation of graphite [J].
Hernandez, Yenny ;
Nicolosi, Valeria ;
Lotya, Mustafa ;
Blighe, Fiona M. ;
Sun, Zhenyu ;
De, Sukanta ;
McGovern, I. T. ;
Holland, Brendan ;
Byrne, Michele ;
Gun'ko, Yurii K. ;
Boland, John J. ;
Niraj, Peter ;
Duesberg, Georg ;
Krishnamurthy, Satheesh ;
Goodhue, Robbie ;
Hutchison, John ;
Scardaci, Vittorio ;
Ferrari, Andrea C. ;
Coleman, Jonathan N. .
NATURE NANOTECHNOLOGY, 2008, 3 (09) :563-568
[8]   Simulating the Initial Stage of Phenolic Resin Carbonization via the ReaxFF Reactive Force Field [J].
Jiang, De-en ;
van Duin, Adri C. T. ;
Goddard, William A., III ;
Dai, Sheng .
JOURNAL OF PHYSICAL CHEMISTRY A, 2009, 113 (25) :6891-6894
[9]   Nickel-Assisted Healing of Defective Graphene [J].
Karoui, Sondes ;
Amara, Hakim ;
Bichara, Christophe ;
Ducastelle, Francois .
ACS NANO, 2010, 4 (10) :6114-6120
[10]   Quantum Chemical Simulation of Phenol-Formaldehyde Resin Carbonization in the Presence of Phosphoric Acid: Computational Evidence of Michaelis-Arbuzov-Type Reaction [J].
Khavryuchenko, Volodymyr D. ;
Khavryuchenko, Oleksiy V. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (15) :7628-7635