Dispersive optical dromions and domain walls with a few golden integration formulae

被引:3
作者
Zayed, Elsayed M. E. [1 ]
Shohib, Reham M. A. [1 ]
El-Horbaty, Mahmoud M. [1 ]
Biswas, Anjan [2 ,3 ,4 ]
Ekici, Mehmet [5 ]
Zhou, Qin [6 ]
Khan, Salam [2 ]
Triki, Houria [7 ]
Alshomrani, Ali S. [3 ]
Belic, Milivoj R. [8 ]
机构
[1] Zagazig Univ, Fac Sci, Math Dept, Zagazig, Egypt
[2] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
[3] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[4] Tshwane Univ Technol, Dept Math & Stat, ZA-0008 Pretoria, South Africa
[5] Yozgat Bozok Univ, Fac Sci & Arts, Dept Math, TR-66100 Yozgat, Turkey
[6] Wuhan Donghu Univ, Sch Elect & Informat Engn, Wuhan 430212, Peoples R China
[7] Badji Mokhtar Univ, Fac Sci, Dept Phys, Radiat Phys Lab, POB 12, Annaba, Algeria
[8] Texas A&M Univ Qatar, Sci Program, POB 23874, Doha, Qatar
来源
OPTIK | 2020年 / 202卷 / 202期
基金
中国国家自然科学基金;
关键词
Dromions; Domain walls; Dispersion; Integrability; NONLINEAR SCHRODINGER-EQUATION; ANTI-CUBIC NONLINEARITY; POWER-LAW NONLINEARITY; SOLITONS; PERTURBATION; PROPAGATION;
D O I
10.1016/j.ijleo.2019.163439
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper reveals optical dromions and domain walls to (2 + 1)-dimensional nonlinear Schrodinger's equation in presence of higher order dispersion terms, together with Kerr law nonlinearity. Four notable integration algorithms, via, the sine-cosine method, the simplest equation method, the modified Kudryashov method and the unified Riccati equation expansion have been applied with grand success. The revealed solutions come with their respective existence criteria that are also presented.
引用
收藏
页数:13
相关论文
共 30 条
[1]  
Biswas A, 2010, NONLINEAR PHYS SCI, P1, DOI 10.1007/978-3-642-10220-2
[2]   Highly dispersive optical solitons with non-local nonlinearity by exp-function [J].
Biswas, Anjan ;
Ekici, Mehmet ;
Sonmezoglu, Abdullah ;
Belic, Milivoj R. .
OPTIK, 2019, 186 :288-292
[3]   Highly dispersive optical solitons with undetermined coefficients [J].
Biswas, Anjan ;
Vega-Guzman, Jose ;
Mahmood, Mohammad F. ;
Khan, Salam ;
Ekici, Mehmet ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Belic, Milivoj R. .
OPTIK, 2019, 182 :890-896
[4]   Highly dispersive optical solitons with Kerr law nonlinearity by F-expansion [J].
Biswas, Anjan ;
Ekicid, Mehmet ;
Sonmezoglu, Abdullah ;
Belic, Milivoj R. .
OPTIK, 2019, 181 :1028-1038
[5]   Resonant optical solitons with parabolic and dual-power laws by semi-inverse variational principle [J].
Biswas, Anjan ;
Zhou, Qin ;
Triki, Houria ;
Ullah, Malik Zaka ;
Asma, Mir ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
JOURNAL OF MODERN OPTICS, 2018, 65 (02) :179-184
[6]   Resonant 1-soliton solution in anti-cubic nonlinear medium with perturbations [J].
Biswas, Anjan ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Triki, Houria ;
Belic, Milivoj ;
Alqahtani, Rubayyi T. .
OPTIK, 2017, 145 :14-17
[7]   Resonant optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle [J].
Biswas, Anjan ;
Ullah, Malik Zaka ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Triki, Houria ;
Belic, Milivoj .
OPTIK, 2017, 145 :18-21
[8]   Optical soliton perturbation with anti-cubic nonlinearity by semi-inverse variational principle [J].
Biswas, Anjan ;
Zhou, Qin ;
Ullah, Malik Zaka ;
Triki, Houria ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2017, 143 :131-134
[9]   Optical solitons with quadratic-cubic nonlinearity by semi-inverse variational principle [J].
Biswas, Anjan ;
Ullah, Malik Zaka ;
Asma, Mir ;
Zhou, Qin ;
Moshokoa, Seithuti P. ;
Belic, Milivoj .
OPTIK, 2017, 139 :16-19
[10]   OPTICAL SOLITONS WITH HIGHER ORDER DISPERSION BY SEMI-INVERSE VARIATIONAL PRINCIPLE [J].
Green, P. D. ;
Milovic, D. ;
Lott, D. A. ;
Biswas, A. .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2010, 102 :337-350