Ablation of BATF Alleviates Transplant Rejection via Abrogating the Effector Differentiation and Memory Responses of CD8+ T Cells

被引:4
作者
Li, Shuang
Zou, Dawei
Chen, Wenhao
Cheng, Yating
Britz, Gavin W.
Weng, Yi-Lan
Liu, Zhaoqian
机构
[1] Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha
[2] Institute of Clinical Pharmacology, Central South University, Changsha
[3] Department of Neurosurgery, Houston Methodist Neurological Institute, Houston, TX
[4] Center for Neuroregeneration, Houston Methodist Research Institute, Houston, TX
[5] Immunobiology Transplant Science Center, Department of Surgery, Houston Methodist Research Institute Institute for Academic Medicine, Houston Methodist Hospital, Houston, TX
关键词
BATF; CD8(+) T cells; effector differentiation; allograft rejection; transplantation; memory; TRANSCRIPTION FACTOR IRF4; REGULATORY FACTOR 4; TERMINAL DIFFERENTIATION; PERIPHERAL-BLOOD; BET; CHECKPOINT; EXPRESSION; COOPERATE; EXPANSION; ZEB2;
D O I
10.3389/fimmu.2022.882721
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Allogeneic CD8(+) T cells are prominently involved in allograft rejection, but how their effector differentiation and function are regulated at a transcriptional level is not fully understood. Herein, we identified the basic leucine zipper ATF-like transcription factor (BATF) as a key transcription factor that drives the effector program of allogeneic CD8(+) T cells. We found that BATF is highly expressed in graft-infiltrating CD8(+) T cells, and its ablation in CD8(+) T cells significantly prolonged skin allograft survival in a fully MHC-mismatched transplantation model. To investigate how BATF dictates allogeneic CD8(+) T cell response, BATF(-/-) and wild-type (WT) CD8(+) T cells were mixed in a 1:1 ratio and adoptively transferred into B6.Rag1(-/-) mice 1 day prior to skin transplantation. Compared with WT CD8(+) T cells at the peak of rejection response, BATF(-/-) CD8(+) T cells displayed a dysfunctional phenotype, evident by their failure to differentiate into CD127(-)KLRG1(+) terminal effectors, impaired proliferative capacity and production of pro-inflammatory cytokines/cytotoxic molecules, and diminished capacity to infiltrate allografts. In association with the failure of effector differentiation, BATF(-/-) CD8(+) T cells largely retained TCF1 expression and expressed significantly low levels of T-bet, TOX, and Ki67. At the memory phase, BATF-deficient CD8(+) T cells displayed impaired effector differentiation upon allogeneic antigen re-stimulation. Therefore, BATF is a critical transcriptional determinant that governs the terminal differentiation and memory responses of allogeneic CD8(+) T cells in the transplantation setting. Targeting BATF in CD8(+) T cells may be an attractive therapeutic approach to promote transplant acceptance.
引用
收藏
页数:12
相关论文
共 57 条
[1]   BATF Modulates the Th2 Locus Control Region and Regulates CD4+ T Cell Fate during Antihelminth Immunity [J].
Bao, Katherine ;
Carr, Tiffany ;
Wu, Jianxuan ;
Barclay, William ;
Jin, Jingxiao ;
Ciofani, Maria ;
Reinhardt, R. Lee .
JOURNAL OF IMMUNOLOGY, 2016, 197 (11) :4371-4381
[2]   The Transcription Factor BATF Controls CD8+ T Cell Effector Differentiation [J].
Barnitz, R. Anthony ;
Kurachi, Makoto ;
Lemieux, Madeleine E. ;
Yosef, Nir ;
Dilorio, Michael A. ;
Yates, Kathleen B. ;
Godec, Jernej ;
Odorizzi, Pamela ;
Regev, Aviv ;
Wherry, E. John ;
Haining, W. Nicholas .
BLOOD, 2013, 122 (21)
[3]   Checkpoint Blockade Immunotherapy Relies on T-bet but Not Eomes to Induce Effector Function in Tumor-Infiltrating CD8+ T Cells [J].
Berrien-Elliott, Melissa M. ;
Yuan, Jinyun ;
Swier, Lauryn E. ;
Jackson, Stephanie R. ;
Chen, Collin L. ;
Donlin, Maureen J. ;
Teague, Ryan M. .
CANCER IMMUNOLOGY RESEARCH, 2015, 3 (02) :116-124
[4]   BATF regulates progenitor to cytolytic effector CD8+ T cell transition during chronic viral infection [J].
Chen, Yao ;
Zander, Ryan A. ;
Wu, Xiaopeng ;
Schauder, David M. ;
Kasmani, Moujtaba Y. ;
Shen, Jian ;
Zheng, Shikan ;
Burns, Robert ;
Taparowsky, Elizabeth J. ;
Cui, Weiguo .
NATURE IMMUNOLOGY, 2021, 22 (08) :996-+
[5]   TCF-1-Centered Transcriptional Network Drives an Effector versus Exhausted CD8 T Cell-Fate Decision [J].
Chen, Zeyu ;
Ji, Zhicheng ;
Ngiow, Shin Foong ;
Manne, Sasikanth ;
Cai, Zhangying ;
Huang, Alexander C. ;
Johnson, John ;
Staupe, Ryan P. ;
Bengsch, Bertram ;
Xu, Caiyue ;
Yu, Sixiang ;
Kurachi, Makoto ;
Herati, Ramin S. ;
Vella, Laura A. ;
Baxter, Amy E. ;
Wu, Jennifer E. ;
Khan, Omar ;
Beltra, Jean-Christophe ;
Giles, Josephine R. ;
Stelekati, Erietta ;
McLane, Laura M. ;
Lau, Chi Wai ;
Yang, Xiaolu ;
Berger, Shelley L. ;
Vahedi, Golnaz ;
Ji, Hongkai ;
Wherry, E. John .
IMMUNITY, 2019, 51 (05) :840-+
[6]   Granzymes and perforin in solid organ transplant rejection [J].
Choy, J. C. .
CELL DEATH AND DIFFERENTIATION, 2010, 17 (04) :567-576
[7]  
Combadière B, 2000, EUR J IMMUNOL, V30, P3598, DOI 10.1002/1521-4141(200012)30:12<3598::AID-IMMU3598>3.0.CO
[8]  
2-E
[9]   Suppression of Tcf1 by Inflammatory Cytokines Facilitates Effector CD8 T Cell Differentiation [J].
Danilo, Maxime ;
Chennupati, Vijaykumar ;
Silva, Joana Gomes ;
Siegert, Stefanie ;
Held, Werner .
CELL REPORTS, 2018, 22 (08) :2107-2117
[10]   Precursors for Nonlymphoid-Tissue Treg Cells Reside in Secondary Lymphoid Organs and Are Programmed by the Transcription Factor BATF [J].
Delacher, Michael ;
Imbusch, Charles D. ;
Hotz-Wagenblatt, Agnes ;
Mallm, Jan-Philipp ;
Bauer, Katharina ;
Simon, Malte ;
Riegel, Dania ;
Rendeiro, Andre F. ;
Bittner, Sebastian ;
Sanderink, Lieke ;
Pant, Asmita ;
Schmidleithner, Lisa ;
Braband, Kathrin L. ;
Echtenachter, Bernd ;
Fischer, Alexander ;
Giunchiglia, Valentina ;
Hoffmann, Petra ;
Edinger, Matthias ;
Bock, Christoph ;
Rehli, Michael ;
Brors, Benedikt ;
Schmidl, Christian ;
Feuerer, Markus .
IMMUNITY, 2020, 52 (02) :295-+