Mutually temporally independent connectivity patterns: A new framework to study the dynamics of brain connectivity at rest with application to explain group difference based on gender

被引:59
作者
Yaesoubi, Maziar [1 ,2 ]
Miller, Robyn L. [1 ]
Calhoun, Vince D. [1 ,2 ]
机构
[1] Mind Res Network, Albuquerque, NM 87106 USA
[2] 1 Univ New Mexico, Dept ECE, Albuquerque, NM 87131 USA
关键词
Functional connectivity; Functional network connectivity; Temporal ICA; Connectivity patterns; Connectivity state; Connectivity anti-state; FUNCTIONAL MRI DATA; NETWORKS; COMPONENTS; HEALTHY; TASK;
D O I
10.1016/j.neuroimage.2014.11.054
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Functional connectivity analysis of the human brain is an active area in fMRI research. It focuses on identifying meaningful brain networks that have coherent activity either during a task or in the resting state. These networks are generally identified either as collections of voxels whose time series correlate strongly with a pre-selected region or voxel, or using data-driven methodologies such as independent component analysis (ICA) that compute sets of maximally spatially independent voxel weightings (component spatial maps (SMs)), each associated with a single time course (TC). Studies have shown that regardless of the way these networks are defined, the activity coherence among them has a dynamic nature which is hard to estimate with global coherence analysis such as correlation or mutual information. Sliding window analyses in which functional network connectivity (FNC) is estimated separately at each time window is one of the more widely employed approaches to studying the dynamic nature of functional network connectivity (dFNC). Observed FNC patterns are summarized and replaced with a smaller set of prototype connectivity patterns ("states" or "components"), and then a dynamical analysis is applied to the resulting sequences of prototype states. In this work we are looking for a small set of connectivity patterns whose weighted contributions to the dynamically changing dFNCs are independent of each other in time. We discuss our motivation for this work and how it differs from existing approaches. Also, in a group analysis based on gender we show that males significantly differ from females by occupying significantly more combinations of these connectivity patterns over the course of the scan. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:85 / 94
页数:10
相关论文
共 29 条
[1]   Tracking Whole-Brain Connectivity Dynamics in the Resting State [J].
Allen, Elena A. ;
Damaraju, Eswar ;
Plis, Sergey M. ;
Erhardt, Erik B. ;
Eichele, Tom ;
Calhoun, Vince D. .
CEREBRAL CORTEX, 2014, 24 (03) :663-676
[2]   A baseline for the multivariate comparison of resting-state networks [J].
Allen, Elena A. ;
Erhardt, Erik B. ;
Damaraju, Eswar ;
Gruner, William ;
Segall, Judith M. ;
Silva, Rogers F. ;
Havlicek, Martin ;
Rachakonda, Srinivas ;
Fries, Jill ;
Kalyanam, Ravi ;
Michael, Andrew M. ;
Caprihan, Arvind ;
Turner, Jessica A. ;
Eichele, Tom ;
Adelsheim, Steven ;
Bryan, Angela D. ;
Bustillo, Juan ;
Clark, Vincent P. ;
Ewing, Sarah W. Feldstein ;
Filbey, Francesca ;
Ford, Corey C. ;
Hutchison, Kent ;
Jung, Rex E. ;
Kiehl, Kent A. ;
Kodituwakku, Piyadasa ;
Komesu, Yuko M. ;
Mayer, Andrew R. ;
Pearlson, Godfrey D. ;
Phillips, John P. ;
Sadek, Joseph R. ;
Stevens, Michael ;
Teuscher, Ursina ;
Thoma, Robert J. ;
Calhoun, Vince D. .
FRONTIERS IN SYSTEMS NEUROSCIENCE, 2011, 5
[3]   Investigations into resting-state connectivity using independent component analysis [J].
Beckmann, CF ;
DeLuca, M ;
Devlin, JT ;
Smith, SM .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2005, 360 (1457) :1001-1013
[4]   Large-scale brain networks in cognition: emerging methods and principles [J].
Bressler, Steven L. ;
Menon, Vinod .
TRENDS IN COGNITIVE SCIENCES, 2010, 14 (06) :277-290
[5]   Complex brain networks: graph theoretical analysis of structural and functional systems [J].
Bullmore, Edward T. ;
Sporns, Olaf .
NATURE REVIEWS NEUROSCIENCE, 2009, 10 (03) :186-198
[6]   Spatial and temporal independent component analysis of functional MRI data containing a pair of task-related waveforms [J].
Calhoun, VD ;
Adali, T ;
Pearlson, GD ;
Pekar, JJ .
HUMAN BRAIN MAPPING, 2001, 13 (01) :43-53
[7]   A method for making group inferences from functional MRI data using independent component analysis [J].
Calhoun, VD ;
Adali, T ;
Pearlson, GD ;
Pekar, JJ .
HUMAN BRAIN MAPPING, 2001, 14 (03) :140-151
[8]   The Chronnectome: Time-Varying Connectivity Networks as the Next Frontier in fMRI Data Discovery [J].
Calhoun, Vince D. ;
Miller, Robyn ;
Pearlson, Godfrey ;
Adali, Tulay .
NEURON, 2014, 84 (02) :262-274
[9]  
Calhoun Vince D, 2012, IEEE Rev Biomed Eng, V5, P60, DOI 10.1109/RBME.2012.2211076
[10]  
Chang C, 2010, FILM COMMENT, V46, P81