Mitigation of organic laser damage precursors from chemical processing of fused silica

被引:41
作者
Baxamusa, S. [1 ]
Miller, P. E.
Wong, L.
Steele, R.
Shen, N.
Bude, J.
机构
[1] Lawrence Livermore Natl Lab, Phys & Life Sci Directorate, Livermore, CA 94550 USA
关键词
OPTICS; CONTAMINATION; SURFACES; PULSES; BULK;
D O I
10.1364/OE.22.029568
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Increases in the laser damage threshold of fused silica have been driven by the successive elimination of near-surface damage precursors such as polishing residue, fractures, and inorganic salts. In this work, we show that trace impurities in ultrapure water used to process fused silica optics may be responsible for the formation of carbonaceous deposits. We use surrogate materials to show that organic compounds precipitated onto fused silica surfaces form discrete damage precursors. Following a standard etching process, solvent-free oxidative decomposition using oxygen plasma or high-temperature thermal treatments in air reduced the total density of damage precursors to as low as <50 cm(-2). Finally, we show that inorganic compounds are more likely to cause damage when they are tightly adhered to a surface, which may explain why high-temperature thermal treatments have been historically unsuccessful at removing extrinsic damage precursors from fused silica. (C)2014 Optical Society of America
引用
收藏
页码:29568 / 29577
页数:10
相关论文
共 21 条
[1]   Impact of storage induced outgassing organic contamination on laser induced damage of silica optics at 351 nm [J].
Bien-Aime, K. ;
Belin, C. ;
Gallais, L. ;
Grua, P. ;
Fargin, E. ;
Neauport, J. ;
Tovena-Pecault, I. .
OPTICS EXPRESS, 2009, 17 (21) :18703-18713
[2]   Laser induced damage of fused silica polished optics due to a droplet forming organic contaminant [J].
Bien-Aime, Karell ;
Neauport, Jerome ;
Tovena-Pecault, Isabelle ;
Fargin, Evelyne ;
Labrugere, Christine ;
Belin, Colette ;
Couzi, Michel .
APPLIED OPTICS, 2009, 48 (12) :2228-2235
[3]   CO2-laser polishing for reduction of 351-nm surface damage initiation in fused silica [J].
Brusasco, RM ;
Penetrante, BM ;
Butler, JA ;
Maricle, SM ;
Peterson, JE .
LASER-INDUCED DAMAGE IN OPTICAL MATERIALS: 2001 PROCEEDINGS, 2002, 4679 :34-39
[4]   High fluence laser damage precursors and their mitigation in fused silica [J].
Bude, J. ;
Miller, P. ;
Baxamusa, S. ;
Shen, N. ;
Laurence, T. ;
Steele, W. ;
Suratwala, T. ;
Wong, L. ;
Carr, W. ;
Cross, D. ;
Monticelli, M. .
OPTICS EXPRESS, 2014, 22 (05) :5839-5851
[5]   Techniques for qualitative and quantitative measurement of aspects of laser-induced damage important for laser beam propagation [J].
Carr, C. W. ;
Feit, M. D. ;
Nostrand, M. C. ;
Adams, J. J. .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2006, 17 (07) :1958-1962
[6]   Laser-supported solid-state absorption fronts in silica [J].
Carr, C. W. ;
Bude, J. D. ;
DeMange, P. .
PHYSICAL REVIEW B, 2010, 82 (18)
[7]  
Carr C. W., OPT EXPRESS S4, V19
[8]   Intrinsic laser-induced breakdown of silicate glasses [J].
Glebov, LB .
LASER-INDUCED DAMAGE IN OPTICAL MATERIALS: 2001 PROCEEDINGS, 2002, 4679 :321-331
[9]   National ignition facility laser performance status [J].
Haynam, C. A. ;
Wegner, P. J. ;
Auerbach, J. M. ;
Bowers, M. W. ;
Dixit, S. N. ;
Erbert, G. V. ;
Heestand, G. M. ;
Henesian, M. A. ;
Hermann, M. R. ;
Jancaitis, K. S. ;
Manes, K. R. ;
Marshall, C. D. ;
Mehta, N. C. ;
Menapace, J. ;
Moses, E. ;
Murray, J. R. ;
Nostrand, M. C. ;
Orth, C. D. ;
Patterson, R. ;
Sacks, R. A. ;
Shaw, M. J. ;
Spaeth, M. ;
Sutton, S. B. ;
Williams, W. H. ;
Widmayer, C. C. ;
White, R. K. ;
Yang, S. T. ;
Van Wonterghem, B. M. .
APPLIED OPTICS, 2007, 46 (16) :3276-3303
[10]  
JONES SC, 1989, OPT ENG, V28, P1039, DOI 10.1117/12.7977089