Parrondo's paradox for homoeomorphisms

被引:0
作者
Gasull, A. [1 ,2 ]
Hernandez-Corbato, L. [3 ,4 ]
Ruiz del Portal, F. R. [3 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Edifici Cc, Barcelona 08193, Spain
[2] Ctr Recerca Matemat, Edifici Cc,Campus Bellaterra, Barcelona 08193, Spain
[3] Univ Complutense Madrid, Dept Algebra Geometria & Topol, Madrid, Spain
[4] CSIC UAM UCM UC3M, Inst Ciencias Matemat, Madrid, Spain
关键词
Dynamical Parrondo's paradox; fixed points; local and global asymptotic stability; random dynamical systems; DIFFERENCE-EQUATIONS; ATTRACTORS; DISCRETE;
D O I
10.1017/prm.2021.28
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct two planar homoeomorphisms f and g for which the origin is a globally asymptotically stable fixed point whereas for f o g and g o f the origin is a global repeller. Furthermore, the origin remains a global repeller for the iterated function system generated by f and g where each of the maps appears with a certain probability. This planar construction is also extended to any dimension >2 and proves for first time the appearance of the dynamical Parrondo's paradox in odd dimensions.
引用
收藏
页码:817 / 825
页数:9
相关论文
共 50 条
  • [41] Is Kyle's equilibrium model stable?
    Cetin, Umut
    Larsen, Kasper
    [J]. MATHEMATICS AND FINANCIAL ECONOMICS, 2024, 18 (04) : 623 - 639
  • [42] On Cartan's theorem for linear operators
    Chen, Wei
    Han, Qi
    Qu, Jingjing
    [J]. MATHEMATISCHE NACHRICHTEN, 2017, 290 (16) : 2560 - 2566
  • [43] More on knots in Robinson's attractor
    Al-Hashimi, Ghazwan
    Sullivan, Michael C.
    [J]. TOPOLOGY AND ITS APPLICATIONS, 2021, 298
  • [44] RIGIDITY OF POWERS AND KOSNIOWSKI'S CONJECTURE
    Lu, Zhu
    Musin, Oleg R.
    [J]. SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2018, 15 : 1227 - 1236
  • [45] S-iteration scheme and polynomiography
    Kang, Shin Min
    Alsulami, Flamed H.
    Rafiq, Arif
    Shahid, Abdul Aziz
    [J]. JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2015, 8 (05): : 617 - 627
  • [46] Cardinal inequalities for S(n)-spaces
    I. S. Gotchev
    [J]. Acta Mathematica Hungarica, 2019, 159 : 229 - 245
  • [47] OPTi's algorithm for discreteness determination
    Wada, M
    [J]. EXPERIMENTAL MATHEMATICS, 2006, 15 (01) : 61 - 66
  • [48] Categorising: Inside the crow's brain
    Butterworth, Brian
    [J]. CURRENT BIOLOGY, 2023, 33 (12) : R694 - R695
  • [49] Higher Order Methods of the Basic Family of Iterations via S-Iteration Scheme with s-Convexity
    Gdawiec, Krzysztof
    Shahid, Abdul Aziz
    Nazeer, Waqas
    [J]. MEDITERRANEAN JOURNAL OF MATHEMATICS, 2020, 17 (02)
  • [50] Some Edelstein's Fixed Point Theorems in B-S Type Fuzzy Normed Linear Spaces
    Biswas, Amit
    Chiney, Moumita
    Samanta, S. K.
    [J]. NEW MATHEMATICS AND NATURAL COMPUTATION, 2024, 20 (01) : 91 - 102