Parrondo's paradox for homoeomorphisms

被引:0
|
作者
Gasull, A. [1 ,2 ]
Hernandez-Corbato, L. [3 ,4 ]
Ruiz del Portal, F. R. [3 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Edifici Cc, Barcelona 08193, Spain
[2] Ctr Recerca Matemat, Edifici Cc,Campus Bellaterra, Barcelona 08193, Spain
[3] Univ Complutense Madrid, Dept Algebra Geometria & Topol, Madrid, Spain
[4] CSIC UAM UCM UC3M, Inst Ciencias Matemat, Madrid, Spain
关键词
Dynamical Parrondo's paradox; fixed points; local and global asymptotic stability; random dynamical systems; DIFFERENCE-EQUATIONS; ATTRACTORS; DISCRETE;
D O I
10.1017/prm.2021.28
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct two planar homoeomorphisms f and g for which the origin is a globally asymptotically stable fixed point whereas for f o g and g o f the origin is a global repeller. Furthermore, the origin remains a global repeller for the iterated function system generated by f and g where each of the maps appears with a certain probability. This planar construction is also extended to any dimension >2 and proves for first time the appearance of the dynamical Parrondo's paradox in odd dimensions.
引用
收藏
页码:817 / 825
页数:9
相关论文
共 50 条
  • [21] NOTES ON BROWDER'S AND HALPERN'S METHODS FOR NONEXPANSIVE MAPPINGS
    Cui, Yan-Lan
    Liu, Xia
    FIXED POINT THEORY, 2009, 10 (01): : 89 - 98
  • [22] REMARKS ON PASICKI'S ABSTRACT METRIC SPACES AND LIFSHITS'S CONSTANT
    Kirk, William A.
    Shahzad, Naseer
    FIXED POINT THEORY, 2017, 18 (02): : 651 - 661
  • [23] Computation of supertrack functions for Chua's oscillator and for Chua's circuit with memristor
    Caldarola, Fabio
    Pantano, Pietro
    Bilotta, Eleonora
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2021, 94
  • [24] Fractional equations and generalizations of Schaefer's and Krasnoselskii's fixed point theorems
    Burton, T. A.
    Zhang, Bo
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (18) : 6485 - 6495
  • [25] Weighted S p -pseudo S -asymptotic periodicity and applications to Volterra integral equations *
    He, Bing
    Wang, Qi-Ru
    Cao, Jun-Fei
    APPLIED MATHEMATICS AND COMPUTATION, 2020, 380
  • [26] CHAOTIC COMMUNICATION SYSTEM USING CHUA'S OSCILLATORS REALIZED WITH CCII plus s
    Trejo-Guerra, R.
    Tlelo-Cuautle, E.
    Cruz-Hernandez, C.
    Sanchez-Lopez, C.
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2009, 19 (12): : 4217 - 4226
  • [27] A Contribution to Reich’s Conjecture
    Dominique Azé
    Jean-Noël Corvellec
    Vietnam Journal of Mathematics, 2019, 47 : 517 - 526
  • [28] A generalization of the Opial's theorem
    Cegielski, Andrzej
    CONTROL AND CYBERNETICS, 2007, 36 (03): : 601 - 610
  • [29] A Contribution to Reich's Conjecture
    Aze, Dominique
    Corvellec, Jean-Noel
    VIETNAM JOURNAL OF MATHEMATICS, 2019, 47 (03) : 517 - 526
  • [30] On Schrodinger's bridge problem
    Friedland, S.
    SBORNIK MATHEMATICS, 2017, 208 (11) : 1705 - 1721