Parrondo's paradox for homoeomorphisms

被引:0
|
作者
Gasull, A. [1 ,2 ]
Hernandez-Corbato, L. [3 ,4 ]
Ruiz del Portal, F. R. [3 ]
机构
[1] Univ Autonoma Barcelona, Dept Matemat, Edifici Cc, Barcelona 08193, Spain
[2] Ctr Recerca Matemat, Edifici Cc,Campus Bellaterra, Barcelona 08193, Spain
[3] Univ Complutense Madrid, Dept Algebra Geometria & Topol, Madrid, Spain
[4] CSIC UAM UCM UC3M, Inst Ciencias Matemat, Madrid, Spain
关键词
Dynamical Parrondo's paradox; fixed points; local and global asymptotic stability; random dynamical systems; DIFFERENCE-EQUATIONS; ATTRACTORS; DISCRETE;
D O I
10.1017/prm.2021.28
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We construct two planar homoeomorphisms f and g for which the origin is a globally asymptotically stable fixed point whereas for f o g and g o f the origin is a global repeller. Furthermore, the origin remains a global repeller for the iterated function system generated by f and g where each of the maps appears with a certain probability. This planar construction is also extended to any dimension >2 and proves for first time the appearance of the dynamical Parrondo's paradox in odd dimensions.
引用
收藏
页码:817 / 825
页数:9
相关论文
共 50 条
  • [1] PARRONDO'S DYNAMIC PARADOX FOR THE STABILITY OF NON-HYPERBOLIC FIXED POINTS
    Cima, Anna
    Gasull, Armengol
    Manosa, Victor
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (02) : 889 - 904
  • [2] Developments in Parrondo's Paradox
    Abbott, Derek
    APPLICATIONS OF NONLINEAR DYNAMICS-MODEL AND DESIGN OF COMPLEX SYSTEMS, 2009, : 307 - 321
  • [3] ASYMMETRY AND DISORDER: A DECADE OF PARRONDO'S PARADOX
    Abbott, Derek
    FLUCTUATION AND NOISE LETTERS, 2010, 9 (01): : 129 - 156
  • [4] Convergence of a parameter switching algorithm for a class of nonlinear continuous systems and a generalization of Parrondo's paradox
    Danca, Marius-F.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2013, 18 (03) : 500 - 510
  • [5] Parrondo's paradox for chaos control and anticontrol of fractional-order systems
    Danca, Marius-F
    Tang, Wallace K. S.
    CHINESE PHYSICS B, 2016, 25 (01)
  • [6] Parrondo's paradox or chaos control in discrete two-dimensional dynamic systems
    Mendoza, Steve A.
    Matt, Eliza W.
    Guimardes-Blandon, Diego R.
    Peacock-Lopez, Enrique
    CHAOS SOLITONS & FRACTALS, 2018, 106 : 86 - 93
  • [7] A Parrondo paradox in susceptible-infectious-susceptible dynamics over periodic temporal networks
    Sejunti, Maisha Islam
    Taylor, Dane
    Masuda, Naoki
    MATHEMATICAL BIOSCIENCES, 2024, 378
  • [8] Generalized Form of Parrondo's Paradoxical Game with Applications to Chaos Control
    Danca, Marius-F.
    Feckan, Michal
    Romera, Miguel
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2014, 24 (01):
  • [9] An approximation by Parrondo games of the Brownian ratchet
    Song, Mi Jung
    Lee, Jiyeon
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2021, 563
  • [10] A discrete solution for the paradox of Achilles and the tortoise
    Vincent Ardourel
    Synthese, 2015, 192 : 2843 - 2861