Protein thermal stabilization in aqueous solutions of osmolytes

被引:16
|
作者
Bruzdziak, Piotr [1 ]
Panuszko, Aneta [1 ]
Jourdan, Muriel [2 ]
Stangret, Janusz [1 ]
机构
[1] Gdansk Univ Technol, Fac Chem, Dept Phys Chem, Gdansk, Poland
[2] Univ Grenoble, ICMG FR2607, CNRS UMR5250, Dept Chim Mol, F-570 Grenoble 9, France
关键词
water structure; protein stability; circular dichroism; FT-IR spectroscopy; DFT calculations; TRIMETHYLAMINE-N-OXIDE; MOLECULAR-MECHANISM; GLYCINE BETAINE; WATER; UREA; DENATURATION; STABILITY; HYDRATION; SOLUTES; MODEL;
D O I
10.18388/abp.2014_950
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Proteins' thermal stabilization is a significant problem in various biomedical, biotechnological, and technological applications. We investigated thermal stability of hen egg white lysozyme in aqueous solutions of the following stabilizing osmolytes: Glycine (GLY), N-methylglycine (NMG), N,N-dimethylglycine (DMG), N, N, N-trimethylglycine (TMG), and trimethyl-N-oxide (TMAO). Results of CD-UV spectroscopic investigation were compared with FTIR hydration studies' results. Selected osmolytes increased lysozyme's thermal stability in the following order: Gly>NMG>TMAO approximate to DMG> TMG. Theoretical calculations (DFT) showed clearly that osmolytes' amino group protons and water molecules interacting with them played a distinctive role in protein thermal stabilization. The results brought us a step closer to the exact mechanism of protein stabilization by osmolytes.
引用
收藏
页码:65 / 70
页数:6
相关论文
共 50 条
  • [21] Stabilization of Diluted Aqueous Solutions of Horseradish Peroxidase
    A. N. Eremin
    L. P. Budnikova
    O. V. Sviridov
    D. I. Metelitsa
    Applied Biochemistry and Microbiology, 2002, 38 : 151 - 158
  • [22] AQUEOUS NONELECTROLYTE SOLUTIONS . WATER STABILIZATION BY NONELECTROLYTES
    GLEW, DN
    MAK, HD
    RATH, NS
    CHEMICAL COMMUNICATIONS, 1968, (05) : 264 - &
  • [23] Synthesis and Stabilization of Bismuth Nanoparticles in Aqueous Solutions
    Borovikova, L. N.
    Polyakova, I. V.
    Korotkikh, E. M.
    Lavrent'ev, V. K.
    Kipper, A. I.
    Pisarev, O. A.
    RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A, 2018, 92 (11) : 2253 - 2256
  • [24] STABILIZATION OF AQUEOUS-SOLUTIONS OF SODIUM HYDROSULFIDE
    HAJDUK, J
    PRZEMYSL CHEMICZNY, 1978, 57 (10): : 535 - 536
  • [25] Compatibility of osmolytes with Gibbs energy of stabilization of proteins
    Anjum, F
    Rishi, V
    Ahmad, F
    BIOCHIMICA ET BIOPHYSICA ACTA-PROTEIN STRUCTURE AND MOLECULAR ENZYMOLOGY, 2000, 1476 (01): : 75 - 84
  • [26] Effects of Crowding, Osmolytes, Temperature and Pressure on the Interaction Potential of Dense Protein Solutions
    Winter, Roland
    BIOPHYSICAL JOURNAL, 2015, 108 (02) : 347A - 347A
  • [27] Stabilization of human haemoglobin by naturally occurring osmolytes
    Di Domenico, R
    Lavecchia, R
    BIOCHEMICAL ENGINEERING JOURNAL, 2002, 10 (01) : 27 - 30
  • [28] STABILIZATION OF MICROTUBULE PROTEIN IN GLYCEROL SOLUTIONS
    KEATES, RAB
    CANADIAN JOURNAL OF BIOCHEMISTRY, 1981, 59 (05): : 353 - 360
  • [29] Enthalpically driven peptide stabilization by protective osmolytes
    Politi, Regina
    Harries, Daniel
    CHEMICAL COMMUNICATIONS, 2010, 46 (35) : 6449 - 6451
  • [30] Ion-Specific and Thermal Effects in the Stabilization of the Gas Nanobubble Phase in Bulk Aqueous Electrolyte Solutions
    Yurchenko, Stanislav O.
    Shkirin, Alexey V.
    Ninham, Barry W.
    Sychev, Andrey A.
    Babenko, Vladimir A.
    Penkov, Nikita V.
    Kryuchkov, Nikita P.
    Bunkin, Nikolai F.
    LANGMUIR, 2016, 32 (43) : 11245 - 11255