Atomic Cobalt Covalently Engineered Interlayers for Superior Lithium-Ion Storage

被引:250
作者
Wang, Changda [1 ]
Xie, Hui [1 ]
Chen, Shuangming [1 ]
Ge, Binghui [2 ]
Liu, Daobin [1 ]
Wu, Chuanqiang [1 ]
Xu, Wenjie [1 ]
Chu, Wangsheng [1 ]
Babu, Ganguli [3 ]
Ajayan, Pulickel M. [3 ]
Song, Li [1 ]
机构
[1] Univ Sci & Technol China, CAS Ctr Excellence Nanosci, Natl Synchrotron Radiat Lab, Hefei 230029, Anhui, Peoples R China
[2] Chinese Acad Sci, Inst Phys, Beijing Natl Lab Condensed Mater Phys, Beijing 100190, Peoples R China
[3] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA
关键词
atomic cobalt covalence; interlayer spacing engineer; layered materials; Li-ion storage; XANES; ULTRATHIN 2-DIMENSIONAL NANOMATERIALS; RAY-ABSORPTION SPECTROSCOPY; HIGH VOLUMETRIC CAPACITANCE; TI3C2; MXENE; TITANIUM CARBIDE; ANODE MATERIAL; BATTERIES; CARBON; LI; PERFORMANCE;
D O I
10.1002/adma.201802525
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
With the unique-layered structure, MXenes show potential as electrodes in energy-storage devices including lithium-ion (Li+) capacitors and batteries. However, the low Li+-storage capacity hinders the application of MXenes in place of commercial carbon materials. Here, the vanadium carbide (V2C) MXene with engineered interlayer spacing for desirable storage capacity is demonstrated. The interlayer distance of pristine V2C MXene is controllably tuned to 0.735 nm resulting in improved Li-ion capacity of 686.7 mA h g(-1) at 0.1 A g(-1), the best MXene-based Li+-storage capacity reported so far. Further, cobalt ions are stably intercalated into the interlayer of V2C MXene to form a new interlayer-expanded structure via strong V-O-Co bonding. The intercalated V2C MXene electrodes not only exhibit superior capacity up to 1117.3 mA h g(-1) at 0.1 A g(-1), but also deliver a significantly ultralong cycling stability over 15 000 cycles. These results clearly suggest that MXene materials with an engineered interlayer distance will be a rational route for realizing them as superstable and high-performance Li+ capacitor electrodes.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Superior Lithium-Ion Storage at Room and Elevated Temperature in an Industrial Woodchip Derived Porous Carbon
    Adams, Ryan A.
    Dysart, Arthur D.
    Esparza, Roberto
    Acuna, Salvador
    Joshi, Samrudhi R.
    Cox, Aaron
    Mulqueen, David
    Pol, Vilas G.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (32) : 8706 - 8712
  • [42] Ultrafast Lithium-Ion Transport Engineered by Nanoconfinement Effect
    Yang, Yahan
    Li, Zefeng
    Yang, Zhilin
    Zhang, Qiannan
    Chen, Qian
    Jiao, Yuying
    Wang, Zixuan
    Zhang, Xiaokun
    Zhai, Pengbo
    Sun, Zhimei
    Xiang, Yong
    Gong, Yongji
    ADVANCED MATERIALS, 2025, 37 (08)
  • [43] Construction of a Unique Two-Dimensional Hierarchical Carbon Architecture for Superior Lithium-Ion Storage
    Wang, Zhijie
    Yu, Xiaoliang
    He, Wenhui
    Kaneti, Yusuf Valentino
    Han, Da
    Sun, Qi
    He, Yan-Bing
    Xiang, Bin
    ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (49) : 33399 - 33404
  • [44] In situ grown graphene-encapsulated germanium nanowires for superior lithium-ion storage properties
    Wang, Chao
    Ju, Jing
    Yang, Yanquan
    Tang, Yufeng
    Lin, Jianhua
    Shi, Zujin
    Han, Ray P. S.
    Huang, Fuqiang
    JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (31) : 8897 - 8902
  • [45] Fabrication and properties of macroporous tin-cobalt alloy film electrodes for lithium-ion batteries
    Ke, Fu-Sheng
    Huang, Ling
    Wei, Hong-Bing
    Cai, Jin-Shu
    Fan, Xiao-Yong
    Yang, Fang-Zu
    Sun, Shi-Gang
    JOURNAL OF POWER SOURCES, 2007, 170 (02) : 450 - 455
  • [46] Porous carbon sphere anodes for enhanced lithium-ion storage
    Etacheri, Vinodkumar
    Wang, Chengwei
    O'Connell, Michael J.
    Chan, Candace K.
    Pol, Vilas G.
    JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (18) : 9861 - 9868
  • [47] The energy-storage frontier: Lithium-ion batteries and beyond
    Crabtree, George
    Kocs, Elizabeth
    Trahey, Lynn
    MRS BULLETIN, 2015, 40 (12) : 1067 - 1078
  • [48] Facile electrostatic assembly of Si@MXene superstructures for enhanced lithium-ion storage
    Yang, Qing
    Wang, Zhilei
    Xia, Yan
    Wu, Guanhong
    Chen, Chen
    Wang, Jing
    Rao, Pinggen
    Dong, Angang
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2020, 580 : 68 - 76
  • [49] Bimetal-organic Framework-derived Co9S8/ZnS@NC Heterostructures for Superior Lithium-ion Storage
    Duan, Junfei
    Wang, Yongkang
    Li, Hongxing
    Wei, Donghai
    Wen, Fang
    Zhang, Guanhua
    Liu, Piao
    Li, Lingjun
    Zhang, Wei-bing
    Chen, Zhaoyong
    CHEMISTRY-AN ASIAN JOURNAL, 2020, 15 (10) : 1613 - 1620
  • [50] High-Quality Epitaxial Cobalt-Doped GaN Nanowires on Carbon Paper for Stable Lithium-Ion Storage
    Wu, Peng
    Wang, Xiaoguang
    Wang, Danchen
    Wang, Yifan
    Zheng, Qiuju
    Wang, Tailin
    Sun, Changlong
    Liu, Dan
    Chen, Fuzhou
    Wang, Sake
    MOLECULES, 2024, 29 (22):