Inequalities in a Two-Sided Boundary Crossing Problem for Stochastic Processes

被引:2
作者
Lotov, V. I. [1 ,2 ]
Khodjibayev, V. R. [3 ,4 ]
机构
[1] Sobolev Inst Math, Novosibirsk, Russia
[2] Novosibirsk State Univ, Novosibirsk, Russia
[3] Namangan Engn Construct Inst, Namangan, Uzbekistan
[4] Uzbek Acad Sci, Namangan Reg Dept, Inst Math, Namangan, Uzbekistan
关键词
stationary stochastic process with independent increments; first exit time; boundary crossing problem; ruin probability; 519; 21;
D O I
10.1134/S0037446621030083
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Considering a stationary stochastic process with independent increments (Levy process), we study the probability of the first exit from a strip through its upper boundary. We find the two-sided inequalities for this probability under various conditions on the process.
引用
收藏
页码:455 / 461
页数:7
相关论文
共 14 条
[1]  
Borovkov AA, 2013, PROBABILITY THEORY, DOI DOI 10.1007/978-1-4471-5201-9
[2]  
Khodjibaev VR, 1998, Siberian Adv. Math., V8, P41
[3]   ON SOME INEQUALITIES IN BOUNDARY CROSSING PROBLEMS FOR RANDOM WALKS [J].
Lotov, V., I .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2020, 17 :661-671
[4]   Bounds for the probability to leave the interval [J].
Lotov, V., I .
STATISTICS & PROBABILITY LETTERS, 2019, 145 :141-146
[5]  
LOTOV VI, 1988, THEOR PROBAB APPL+, V32, P57
[6]  
LOTOV VI, 1979, THEOR PROBAB APPL+, V24, P480
[7]   ON RANDOM-WALKS IN A STRIP [J].
LOTOV, VI .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 1991, 36 (01) :165-170
[8]  
Lotov VI., 1998, Siberian Adv. Math., V8, P90
[9]  
Mogul'skii AA, 1977, THEORY PROBAB APPL, V21, P470, DOI [10.1137/1121060, DOI 10.1137/1121060]
[10]   LOCAL BEHAVIOR OF PROCESSES WITH INDEPENDENT INCREMENTS [J].
ROGOZIN, BA .
THEORY OF PROBILITY AND ITS APPLICATIONS,USSR, 1968, 13 (03) :482-+