A polynomial algorithm for the extendability problem in bipartite graphs

被引:9
作者
Lakhal, J [1 ]
Litzler, L [1 ]
机构
[1] Inst Natl Telecommun, Dept Informat, F-91011 Evry, France
关键词
graph theory; perfect matching; extendability; connectivity; algorithms;
D O I
10.1016/S0020-0190(97)00177-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Let G = [V,E] be a simple connected graph and let k be an integer such that 0 < k < \V\/2. G is said to be k-extendable if it contains a perfect matching and every matching of k edges extends to, i.e. is a subset of, a perfect matching. The extendability problem consists in finding the maximum value of k, denoted k(0), such that G is k-extendable. We give in this paper the first polynomial algorithm for the extendability problem when the graph is bipartite. Its complexity is O(m.mint (k(0)(3) + n, k(0).n)) where n and m designate the number of vertices and edges of the graph respectively. Furthermore, if a perfect matching or a special orientation of the edges are known then this algorithm can be run in parallel in O(k(0).log n) time using a polynomial number of processors on a concurrent-read concurrent-write PRAM machine. (C) 1998 Elsevier Science B.V.
引用
收藏
页码:11 / 16
页数:6
相关论文
共 11 条
[1]  
ANANCHUEN N, 1994, THESIS CURTIN U TECH
[2]   MATRIX MULTIPLICATION VIA ARITHMETIC PROGRESSIONS [J].
COPPERSMITH, D ;
WINOGRAD, S .
JOURNAL OF SYMBOLIC COMPUTATION, 1990, 9 (03) :251-280
[3]   PERSISTENCY IN MAXIMUM CARDINALITY BIPARTITE MATCHINGS [J].
COSTA, MC .
OPERATIONS RESEARCH LETTERS, 1994, 15 (03) :143-149
[4]  
Gondran M., 1985, GRAPHES ALGORITHMES
[5]   Computing vertex connectivity: New bounds from old techniques [J].
Henzinger, MR ;
Rao, S ;
Gabow, HN .
37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, :462-471
[6]  
Hopcroft J. E., 1973, SIAM Journal on Computing, V2, P225, DOI 10.1137/0202019
[7]  
JAJA J, 1992, INTRO PARLLEL ALGORI
[8]  
LIANG W, 1995, P IEEE 1 INT C ALG A, V1, P437
[9]  
LOVASZ L, 1986, MATCHING THEORY ANN, V29
[10]  
Plummer M. D., 1986, C NUMER, V54, P245