Universal intensity statistics of multifractal resonance states

被引:11
作者
Clauss, Konstantin [1 ,2 ]
Kunzmann, Felix [1 ,2 ]
Baecker, Arnd [1 ,2 ,3 ]
Ketzmerick, Roland [1 ,2 ,3 ]
机构
[1] Tech Univ Dresden, Inst Theoret Phys, D-01062 Dresden, Germany
[2] Tech Univ Dresden, Ctr Dynam, D-01062 Dresden, Germany
[3] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
关键词
FRACTAL WEYL LAW; EIGENVECTOR STATISTICS; WAVE CHAOS; QUANTUM; EIGENFUNCTIONS; ERGODICITY; QUANTIZATION; SCATTERING; SYSTEMS; PHYSICS;
D O I
10.1103/PhysRevE.103.042204
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We conjecture that in chaotic quantum systems with escape, the intensity statistics for resonance states universally follows an exponential distribution. This requires a scaling by the multifractal mean intensity, which depends on the system and the decay rate of the resonance state. We numerically support the conjecture by studying the phase-space Husimi function and the position representation of resonance states of the chaotic standard map, the baker map, and a random matrix model, each with partial escape.
引用
收藏
页数:12
相关论文
共 80 条
[1]   Leaking chaotic systems [J].
Altmann, Eduardo G. ;
Portela, Jefferson S. E. ;
Tel, Tamas .
REVIEWS OF MODERN PHYSICS, 2013, 85 (02) :869-918
[2]  
Arnold V. I., 1968, ERGODIC PROBLEMS CLA
[3]   EXACT THEORY FOR THE QUANTUM EIGENSTATES OF A STRONGLY CHAOTIC SYSTEM [J].
AURICH, R ;
STEINER, F .
PHYSICA D, 1991, 48 (2-3) :445-470
[4]  
Bäcker A, 2002, J PHYS A-MATH GEN, V35, P527, DOI 10.1088/0305-4470/35/3/306
[5]   Rate of quantum ergodicity in Euclidean billiards [J].
Backer, A ;
Schubert, R ;
Stifter, P .
PHYSICAL REVIEW E, 1998, 57 (05) :5425-5447
[6]  
Backer A, REF, P91
[7]  
BACKER A, UNPUB
[8]   Multifractal dimensions for random matrices, chaotic quantum maps, and many-body systems [J].
Baecker, Arnd ;
Haque, Masudul ;
Khaymovich, Ivan M. .
PHYSICAL REVIEW E, 2019, 100 (03)
[9]   THE QUANTIZED BAKERS TRANSFORMATION [J].
BALAZS, NL ;
VOROS, A .
ANNALS OF PHYSICS, 1989, 190 (01) :1-31
[10]   REGULAR AND IRREGULAR SEMICLASSICAL WAVEFUNCTIONS [J].
BERRY, MV .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1977, 10 (12) :2083-2091