Transcription of rat TRPV1 utilizes a dual promoter system that is positively regulated by nerve growth factor

被引:72
作者
Xue, Qing [1 ]
Jong, Beverly [1 ]
Chen, Tom [1 ]
Schumacher, Mark A. [1 ]
机构
[1] Univ Calif San Francisco, Dept Anesthesia & Perioperat Care, San Francisco, CA 94143 USA
关键词
capsaicin receptor; gene; nociceptor; pain; vanilloid receptor subtype 1;
D O I
10.1111/j.1471-4159.2006.04363.x
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
The capsaicin receptor, also known as 'transient receptor potential vanilloid receptor subtype 1' (TRPV1, VR1), is an ion channel subunit expressed in primary afferent nociceptors, which plays a critical role in pain transduction and thermal hyperalgesia. Increases in nociceptor TRPV1 mRNA and protein are associated with tissue injury-inflammation. As little is understood about what controls TRPV1 RNA transcription in nociceptors, we functionally characterized the upstream portion of the rat TRPV1 gene. Two functional rTRPV1 promoter regions and their transcription initiation sites were identified. Although both promoter regions directed transcriptional activity in nerve growth factor (NGF) treated rat sensory neurons, the upstream Core promoter was the most active in cultures enriched in sensory neurons. Because NGF is a key modulator of inflammatory pain, we examined the effect of NGF on rTRPV1 transcription in PC12 cells. NGF positively regulated transcriptional activity of both rTRPV1 promoter regions in PC12 cells. We propose that the upstream regulatory region of the rTRPV1 gene is composed of a dual promoter system that is regulated by NGF. These findings support the hypothesis that NGF produced under conditions of tissue injury and/or inflammation directs an increase of TRPV1 expression in nociceptors in part through a transcription-dependent mechanism.
引用
收藏
页码:212 / 222
页数:11
相关论文
共 61 条
[1]   NGF and GDNF differentially regulate TRPV1 expression that contributes to development of inflammatory thermal hyperalgesia [J].
Amaya, F ;
Shimosato, G ;
Nagano, M ;
Ueda, M ;
Hashimoto, S ;
Tanaka, Y ;
Suzuki, H ;
Tanaka, M .
EUROPEAN JOURNAL OF NEUROSCIENCE, 2004, 20 (09) :2303-2310
[2]   Local inflammation increases vanilloid receptor 1 expression within distinct subgroups of DRG neurons [J].
Amaya, F ;
Oh-Hashi, K ;
Naruse, Y ;
Iijima, N ;
Ueda, M ;
Shimosato, G ;
Tominaga, M ;
Tanaka, Y ;
Tanaka, M .
BRAIN RESEARCH, 2003, 963 (1-2) :190-196
[3]   ENHANCED TRANSLATIONAL EFFICIENCY OF A NOVEL TRANSFORMING GROWTH FACTOR-BETA-3 MESSENGER-RNA IN HUMAN BREAST-CANCER CELLS [J].
ARRICK, BA ;
GRENDELL, RL ;
GRIFFIN, LA .
MOLECULAR AND CELLULAR BIOLOGY, 1994, 14 (01) :619-628
[4]   Nerve growth factor up-regulates the N-methyl-D-aspartate receptor subunit 1 promoter in PC12 cells [J].
Bai, G ;
Kusiak, JW .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1997, 272 (09) :5936-5942
[5]   Signalling pathways involved in the sensitisation of mouse nociceptive neurones by nerve growth factor [J].
Bonnington, JK ;
McNaughton, PA .
JOURNAL OF PHYSIOLOGY-LONDON, 2003, 551 (02) :433-446
[6]   Activation of Ras is necessary and sufficient for upregulation of vanilloid receptor type 1 in sensory neurons by neurotrophic factors [J].
Bron, R ;
Klesse, LJ ;
Shah, K ;
Parada, LF ;
Winter, J .
MOLECULAR AND CELLULAR NEUROSCIENCE, 2003, 22 (01) :118-132
[7]   EVIDENCE FOR RNA SYNTHESIS-DEPENDENT AND SYNTHESIS-INDEPENDENT PATHWAYS IN STIMULATION OF NEURITE OUTGROWTH BY NERVE GROWTH-FACTOR [J].
BURSTEIN, DE ;
GREENE, LA .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1978, 75 (12) :6059-6063
[8]   Impaired nociception and pain sensation in mice lacking the capsaicin receptor [J].
Caterina, MJ ;
Leffler, A ;
Malmberg, AB ;
Martin, WJ ;
Trafton, J ;
Petersen-Zeitz, KR ;
Koltzenburg, M ;
Basbaum, AI ;
Julius, D .
SCIENCE, 2000, 288 (5464) :306-313
[9]   The capsaicin receptor: a heat-activated ion channel in the pain pathway [J].
Caterina, MJ ;
Schumacher, MA ;
Tominaga, M ;
Rosen, TA ;
Levine, JD ;
Julius, D .
NATURE, 1997, 389 (6653) :816-824
[10]   Bradykinin and nerve growth factor release the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition [J].
Chuang, HH ;
Prescott, ED ;
Kong, HY ;
Shields, S ;
Jordt, SE ;
Basbaum, AI ;
Chao, MV ;
Julius, D .
NATURE, 2001, 411 (6840) :957-962