Fractographical analysis of fatigue failed Cu-2.55Ni-0.55Si alloy

被引:16
作者
Atapek, S. H. [1 ]
Pantelakis, S. G. [2 ]
Polat, S. [1 ]
Chamos, A. N. [2 ]
Aktas, G. [1 ]
机构
[1] Kocaeli Univ, Dept Met & Mat Engn, Umuttepe Campus, TR-41380 Kocaeli, Turkey
[2] Univ Patras, Dept Mech Engn & Aeronaut, Lab Technol & Strength Mat, Rion 26500, Greece
关键词
Corson alloy; Microstructure; Fatigue; Characterization; CU-NI-SI; ELECTRICAL-CONDUCTIVITY; DYNAMIC EMBRITTLEMENT; STRENGTH; MICROSTRUCTURE; TEMPERATURE; BEHAVIOR; TENSILE;
D O I
10.1016/j.tafmec.2015.12.015
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In this study, the fatigue behavior of Cu-2.55Ni-055Si alloy specimens was investigated by fracto-graphical analysis. Fatigue specimens were prepared according to ISO 1099 standard and constant amplitude loading was applied at a stress ratio (R = sigma(min)/sigma(max)) of R = -1. The criterion set for the termination of the fatigue tests was either the fracture of the specimen or the limit of 5E6 fatigue cycles. Tests were carried out at different stress levels to determine the stress-lifetime curve (S-N curve) of the material. The fatigue limit was evaluated at 179 MPa. All tested surfaces were examined by scanning electron microscope to characterize the fracture behavior. In general, metal silicides, as well as grain and twin boundaries contributed to crack propagation. The fracture surfaces exhibited typical tracks indicating dimple rupture, intergranular/transgranular rupture and fatigue rupture as a function of the applied sigma(max). (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:60 / 66
页数:7
相关论文
共 26 条
[1]   Evaluation of nanoscaled precipitates in a Cu-Ni-Si-Cr alloy during aging [J].
Cheng, J. Y. ;
Tang, B. B. ;
Yu, F. X. ;
Shen, B. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 614 :189-195
[2]   Cyclic Softening of Cu-Ni-Si Alloy Single Crystals under Low-Cycle Fatigue [J].
Fujii, Toshiyuki ;
Kamio, Hiroshi ;
Sugisawa, Yoshifumi ;
Onaka, Susumu ;
Kato, Masaharu .
PRICM 7, PTS 1-3, 2010, 654-656 :1287-+
[3]   Precipitation in Cu-Ni-Si-Zn alloy for lead frame [J].
Huang, FX ;
Ma, JS ;
Ning, HL ;
Cao, YW ;
Geng, ZT .
MATERIALS LETTERS, 2003, 57 (13-14) :2135-2139
[4]   Netted structure of grain boundary phases and its influence on electrical conductivity of Cu-Ni-Si system alloys [J].
Jia, L. ;
Xie, H. ;
Lu, Z. L. ;
Wang, X. ;
Wang, S. M. .
MATERIALS SCIENCE AND TECHNOLOGY, 2012, 28 (02) :243-248
[5]   Orientation and diffraction patterns of δ-Ni2Si precipitates in Cu-Ni-Si alloy [J].
Jia Yan-lin ;
Wang Ming-pu ;
Chen Chang ;
Dong Qi-yi ;
Wang Shan ;
Li Zhou .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 557 :147-151
[6]   X-ray diffraction analysis of cold-worked Cu-Ni-Si and Cu-Ni-Si-Cr alloys by Rietveld method [J].
Khereddine, A. ;
Larbi, F. Hadj ;
Djebala, L. ;
Azzeddine, H. ;
Alili, B. ;
Bradai, D. .
TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA, 2011, 21 (03) :482-487
[7]   Effect of Ti addition on tensile properties of Cu-Ni-Si alloys [J].
Lee, Eungyeong ;
Han, Seungzeon ;
Euh, Kwangjun ;
Lim, Sunghwan ;
Kim, Sangshik .
METALS AND MATERIALS INTERNATIONAL, 2011, 17 (04) :569-576
[8]   Strengthening of Cu-Ni-Si alloy using high-pressure torsion and aging [J].
Lee, Seungwon ;
Matsunaga, Hirotaka ;
Sauvage, Xavier ;
Horita, Zenji .
MATERIALS CHARACTERIZATION, 2014, 90 :62-70
[9]  
Lei JG, 2005, J WUHAN UNIV TECHNOL, V20, P21
[10]   A new ultrahigh strength Cu-Ni-Si alloy [J].
Lei, Q. ;
Li, Z. ;
Xiao, T. ;
Pang, Y. ;
Xiang, Z. Q. ;
Qiu, W. T. ;
Xiao, Z. .
INTERMETALLICS, 2013, 42 :77-84