On the Lucas property of linear recurrent sequences

被引:1
作者
Zhong, Hao [1 ]
Cai, Tianxin [1 ]
机构
[1] Zhejiang Univ, Sch Math Sci, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Lucas property; Fibonacci sequences; Lucas numbers; linear recurrent sequences;
D O I
10.1142/S1793042117500920
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let S be an arithmetic function. S has Lucas property if for any prime p and n = Sigma(r)(i-0) n(i)p(i), where 0 <= n(i) <= p - 1, S(n) = S(n(0)) S(n(1))...S(n(r)) (mod p). In this paper, we discuss the Lucas property of Fibonacci sequences and Lucas numbers. Meanwhile, we find some other interesting results.
引用
收藏
页码:1617 / 1625
页数:9
相关论文
共 5 条