Neural-Network-Based Online HJB Solution for Optimal Robust Guaranteed Cost Control of Continuous-Time Uncertain Nonlinear Systems

被引:240
作者
Liu, Derong [1 ]
Wang, Ding [1 ]
Wang, Fei-Yue [1 ]
Li, Hongliang [1 ]
Yang, Xiong [1 ]
机构
[1] Chinese Acad Sci, Inst Automat, State Key Lab Management & Control Complex Syst, Beijing 100190, Peoples R China
基金
中国国家自然科学基金; 北京市自然科学基金;
关键词
Adaptive critic designs; adaptive/approximate dynamic programming (ADP); Hamilton-Jacobi-Bellman (HJB) equation; neural networks; optimal robust guaranteed cost control; uncertain nonlinear systems; DYNAMIC-PROGRAMMING ALGORITHM; ZERO-SUM GAMES; FEEDBACK-CONTROL; INPUT CONSTRAINTS; UNKNOWN DYNAMICS; TRACKING CONTROL; LEARNING CONTROL; POLICY UPDATE; DESIGN; REINFORCEMENT;
D O I
10.1109/TCYB.2014.2357896
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, the infinite horizon optimal robust guaranteed cost control of continuous-time uncertain nonlinear systems is investigated using neural-network-based online solution of Hamilton-Jacobi-Bellman (HJB) equation. By establishing an appropriate bounded function and defining a modified cost function, the optimal robust guaranteed cost control problem is transformed into an optimal control problem. It can be observed that the optimal cost function of the nominal system is nothing but the optimal guaranteed cost of the original uncertain system. A critic neural network is constructed to facilitate the solution of the modified HJB equation corresponding to the nominal system. More importantly, an additional stabilizing term is introduced for helping to verify the stability, which reinforces the updating process of the weight vector and reduces the requirement of an initial stabilizing control. The uniform ultimate boundedness of the closed-loop system is analyzed by using the Lyapunov approach as well. Two simulation examples are provided to verify the effectiveness of the present control approach.
引用
收藏
页码:2834 / 2847
页数:14
相关论文
共 70 条
  • [1] Nearly optimal control laws for nonlinear systems with saturating actuators using a neural network HJB approach
    Abu-Khalaf, M
    Lewis, FL
    [J]. AUTOMATICA, 2005, 41 (05) : 779 - 791
  • [2] Fixed final time optimal control approach for bounded robust controller design using Hamilton-Jacobi-Bellman solution
    Adhyaru, D. M.
    Kar, I. N.
    Gopal, M.
    [J]. IET CONTROL THEORY AND APPLICATIONS, 2009, 3 (09) : 1183 - 1195
  • [3] Bounded robust control of nonlinear systems using neural network-based HJB solution
    Adhyaru, Dipak M.
    Kar, I. N.
    Gopal, M.
    [J]. NEURAL COMPUTING & APPLICATIONS, 2011, 20 (01) : 91 - 103
  • [4] Discrete-time nonlinear HJB solution using approximate dynamic programming: Convergence proof
    Al-Tamimi, Asma
    Lewis, Frank L.
    Abu-Khalaf, Murad
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2008, 38 (04): : 943 - 949
  • [5] [Anonymous], 1999, Neural network control of robot manipulators and nonlinear systems
  • [6] [Anonymous], 1992, HDB INTELLIGENT CONT
  • [7] Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation
    Beard, RW
    Saridis, GN
    Wen, JT
    [J]. AUTOMATICA, 1997, 33 (12) : 2159 - 2177
  • [8] Missile defense and interceptor allocation by neuro-dynamic programming
    Bertsekas, DP
    Homer, ML
    Logan, DA
    Patek, SD
    Sandell, NR
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART A-SYSTEMS AND HUMANS, 2000, 30 (01): : 42 - 51
  • [9] A novel actor-critic-identifier architecture for approximate optimal control of uncertain nonlinear systems
    Bhasin, S.
    Kamalapurkar, R.
    Johnson, M.
    Vamvoudakis, K. G.
    Lewis, F. L.
    Dixon, W. E.
    [J]. AUTOMATICA, 2013, 49 (01) : 82 - 92
  • [10] ADAPTIVE GUARANTEED COST CONTROL OF SYSTEMS WITH UNCERTAIN PARAMETERS
    CHANG, SSL
    PENG, TKC
    [J]. IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1972, AC17 (04) : 474 - &