Performance Modeling of Bandgap Engineered HgCdTe-Based nBn Infrared Detectors

被引:18
作者
Akhavan, Nima Dehdashti [1 ]
Jolley, Gregory [1 ]
Umana-Membreno, Gilberto Antonio [1 ]
Antoszewski, Jarek [1 ]
Faraone, Lorenzo [2 ]
机构
[1] Univ Western Australia, Sch Elect Elect & Comp Engn, Crawley, WA 6009, Australia
[2] Univ Western Australia, Dept Elect Engn, Crawley, WA 6009, Australia
基金
澳大利亚研究理事会;
关键词
Device simulation; mercury cadmium telluride (HgCdTe); n-type/barrier/n-type (nBn) infrared (IR) detector; unipolar barrier detector;
D O I
10.1109/TED.2014.2359212
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, we present a theoretical study of a band engineered detector design, which significantly improves the performance of mercury cadmium telluride (HgCdTe)-based unipolar n-type/barrier/n-type (nBn) infrared (IR) detectors for the midwave IR and longwave IR spectral bands. This band engineered nBn detector is based on the assumption that the valence band offset, which is normally present between the barrier and n-type absorber layer, can be eliminated using a bandgap engineering approach. The valence offset is the key issue that currently limits the performance of HgCdTe-based nBn detectors. Eliminating the valence band offset allows the nBn detectors to operate at vertical bar V-Bias vertical bar < 50 mV, thus rendering insignificant all tunneling-related dark current components and allowing the detector to achieve the maximum possible diffusion current limited performance. The developed model allows the device performance to be optimized by an appropriate design of the conduction band barrier to block the flow of majority carrier electrons, while allowing minority carrier holes photogenerated in the absorber layer to reach the contact layer unimpeded. Furthermore, because of the absence of tunneling-related dark currents, it is shown that band engineered nBn detector architecture exhibits a better performance at maximum allowed absorber layer doping density compared with conventional nBn detector.
引用
收藏
页码:3691 / 3698
页数:8
相关论文
共 17 条
[1]   Numerical analysis of HgCdTe simultaneous two-color photovoltaic infrared detectors [J].
Bellotti, E ;
D'Orsogna, D .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2006, 42 (3-4) :418-426
[2]  
Gunapala Sarath, 2010, US Patent, Patent No. [US7,737,411B2, 7737411]
[3]   DARK CURRENT ANALYSIS OF INSB PHOTODIODES [J].
HOPKINS, FK ;
BOYD, JT .
INFRARED PHYSICS, 1984, 24 (04) :391-395
[4]   Design and Modeling of HgCdTe nBn Detectors [J].
Itsuno, A. M. ;
Phillips, J. D. ;
Velicu, S. .
JOURNAL OF ELECTRONIC MATERIALS, 2011, 40 (08) :1624-1629
[5]   Mid-wave infrared HgCdTe nBn photodetector [J].
Itsuno, Anne M. ;
Phillips, Jamie D. ;
Velicu, Silviu .
APPLIED PHYSICS LETTERS, 2012, 100 (16)
[6]   High-operating temperature MWIR nBn HgCdTe detector grown by MOCVD [J].
Kopytko, M. ;
Keblowski, A. ;
Gawron, W. ;
Madejczyk, P. ;
Kowalewski, A. ;
Jozwikowski, K. .
OPTO-ELECTRONICS REVIEW, 2013, 21 (04) :402-405
[7]   nBn detector, an infrared detector with reduced dark current and higher operating temperature [J].
Maimon, S. ;
Wicks, G. W. .
APPLIED PHYSICS LETTERS, 2006, 89 (15)
[8]   Performance modeling of MWIR InAs/GaSb/B-Al0.2Ga0.8Sb type-II superlattice nBn detector [J].
Martyniuk, P. ;
Wrobel, J. ;
Plis, E. ;
Madejczyk, P. ;
Kowalewski, A. ;
Gawron, W. ;
Krishna, S. ;
Rogalski, A. .
SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2012, 27 (05)
[9]   Modelling of MWIR HgCdTe complementary barrier HOT detector [J].
Martyniuk, Piotr ;
Rogalski, Antoni .
SOLID-STATE ELECTRONICS, 2013, 80 :96-104
[10]  
Plis E., 2010, APPL PHYS LETT, V97