Quasiconformal homeomorphisms and dynamics III. The Teichmuller space of a holomorphic dynamical system

被引:95
作者
McMullen, CT [1 ]
Sullivan, DP
机构
[1] Harvard Univ, Cambridge, MA 02138 USA
[2] CUNY Grad Ctr, New York, NY USA
[3] SUNY Stony Brook, Stony Brook, NY 11794 USA
基金
美国国家科学基金会;
关键词
D O I
10.1006/aima.1998.1726
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:351 / 395
页数:45
相关论文
共 47 条
[1]  
Ahlfors L. V., 1973, McGraw-Hill Series in Higher Mathematics
[2]   FINITELY GENERATED KLEINIAN GROUPS [J].
AHLFORS, LV .
AMERICAN JOURNAL OF MATHEMATICS, 1964, 86 (02) :413-&
[3]  
[Anonymous], 1981, ANN MATH STUDIES
[4]  
Baker I.N., 1992, Results Math., V22, P651
[5]  
Beardon A.F., 1991, Graduate Texts in Mathematics, V132
[6]   ON SULLIVAN PROOF OF THE FINITENESS THEOREM AND THE EVENTUAL PERIODICITY THEOREM [J].
BERS, L .
AMERICAN JOURNAL OF MATHEMATICS, 1987, 109 (05) :833-852
[7]   HOLOMORPHIC FAMILIES OF INJECTIONS [J].
BERS, L ;
ROYDEN, HL .
ACTA MATHEMATICA, 1986, 157 (3-4) :259-286
[8]   INEQUALITIES FOR FINITELY GENERATED KLEINIAN GROUPS [J].
BERS, L .
JOURNAL D ANALYSE MATHEMATIQUE, 1967, 18 :23-&
[9]   THE DYNAMICS OF COMPLEX POLYNOMIALS AND AUTOMORPHISMS OF THE SHIFT [J].
BLANCHARD, P ;
DEVANEY, RL ;
KEEN, L .
INVENTIONES MATHEMATICAE, 1991, 104 (03) :545-580
[10]   THE ITERATION OF CUBIC POLYNOMIALS .2. PATTERNS AND PARAPATTERNS [J].
BRANNER, B ;
HUBBARD, JH .
ACTA MATHEMATICA, 1992, 169 (3-4) :229-325