Metabolic Regulation of Histone Post-Translational Modifications

被引:238
作者
Fan, Jing [1 ,2 ]
Krautkramer, Kimberly A. [1 ,2 ]
Feldman, Jessica L. [1 ,2 ]
Denu, John M. [1 ]
机构
[1] Univ Wisconsin, Dept Biomol Chem, Madison, WI 53715 USA
[2] Univ Wisconsin, Wisconsin Inst Discovery, Madison, WI 53715 USA
基金
美国国家卫生研究院;
关键词
CHAIN FATTY-ACIDS; PYRUVATE-DEHYDROGENASE COMPLEX; INITIAL-RATE KINETICS; ACETYL-COA; POLY(ADP-RIBOSE) POLYMERASE; SACCHAROMYCES-CEREVISIAE; DEPENDENT HISTONE; MAMMALIAN-CELLS; DIPHOSPHOPYRIDINE NUCLEOTIDE; SUBSTRATE-SPECIFICITY;
D O I
10.1021/cb500846u
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Histone post-translational modifications regulate transcription and other DNA-templated functions. This process is dynamically regulated by specific modifying enzymes whose activities require metabolites that either serve as cosubstrates or act as activators/inhibitors. Therefore, metabolism can influence histone modification by changing local concentrations of key metabolites. Physiologically, the epigenetic response to metabolism is important for nutrient sensing and environment adaption. In pathologic states, the connection between metabolism and histone modification mediates epigenetic abnormality in complex disease. In this review, we summarize recent studies of the molecular mechanisms involved in metabolic regulation of histone modifications and discuss their biological significance.
引用
收藏
页码:95 / 108
页数:14
相关论文
共 145 条
[1]   Regulation of SIRT 1 mediated NAD dependent deacetylation: A novel role for the multifunctional enzyme CD38 [J].
Aksoy, Pinar ;
Escande, Carlos ;
White, Thomas A. ;
Thompson, Michael ;
Soares, Sandra ;
Benech, Juan Claudio ;
Chini, Eduardo N. .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2006, 349 (01) :353-359
[2]   Poly(ADP-ribose) polymerase-dependent energy depletion occurs through inhibition of glycolysis [J].
Andrabi, Shaida A. ;
Umanah, George K. E. ;
Chang, Calvin ;
Stevens, Daniel A. ;
Karuppagounder, Senthilkumar S. ;
Gagne, Jean-Philippe ;
Poirier, Guy G. ;
Dawson, Valina L. ;
Dawson, Ted M. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (28) :10209-10214
[3]   Proteomic characterization of novel histone post-translational modifications [J].
Arnaudo, Anna M. ;
Garcia, Benjamin A. .
EPIGENETICS & CHROMATIN, 2013, 6
[4]   The enzyme CD38 (a NAD glycohydrolase, EC 3.2.2.5) is necessary for the development of diet-induced obesity [J].
Barbosa, Maria Thereza P. ;
Soares, Sandra M. ;
Novak, Colleen M. ;
Sinclair, David ;
Levine, James A. ;
Aksoy, Pinar ;
Chini, Eduardo Nunes .
FASEB JOURNAL, 2007, 21 (13) :3629-3639
[5]   NAD+ metabolism in health and disease [J].
Belenky, Peter ;
Bogan, Katrina L. ;
Brenner, Charles .
TRENDS IN BIOCHEMICAL SCIENCES, 2007, 32 (01) :12-19
[6]   Nicotinamide riboside promotes Sir2 silencing and extends lifespan via Nrk and Urh1/Pnp1/Meu1 pathways to NAD+ [J].
Belenky, Peter ;
Racette, Frances G. ;
Bogan, Katrina L. ;
McClure, Julie M. ;
Smith, Jeffrey S. ;
Brenner, Charles .
CELL, 2007, 129 (03) :473-484
[7]   Aberrant Epigenetic Landscape in Cancer: How Cellular Identity Goes Awry [J].
Berdasco, Maria ;
Esteller, Manel .
DEVELOPMENTAL CELL, 2010, 19 (05) :698-711
[8]   Subcellular compartmentation and differential catalytic properties of the three human nicotinamide mononucleotide adenylyltransferase isoforms [J].
Berger, F ;
Lau, C ;
Dahlmann, M ;
Ziegler, M .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2005, 280 (43) :36334-36341
[9]   Catalytic mechanism of a MYST family histone acetyltransferase [J].
Berndsen, Christopher E. ;
Albaugh, Brittany N. ;
Tan, Song ;
Denu, John M. .
BIOCHEMISTRY, 2007, 46 (03) :623-629
[10]   Molecular Pathways: Gene-Environment Interactions Regulating Dietary Fiber Induction of Proliferation and Apoptosis via Butyrate for Cancer Prevention [J].
Bultman, Scott J. .
CLINICAL CANCER RESEARCH, 2014, 20 (04) :799-803