Superpixel-Based Collaborative and Low-Rank Regularization for Sparse Hyperspectral Unmixing

被引:25
作者
Chen, Tao [1 ]
Liu, Yang [1 ]
Zhang, Yuxiang [1 ]
Du, Bo [2 ]
Plaza, Antonio [3 ]
机构
[1] China Univ Geosci, Inst Geophys & Geomat, Wuhan 430074, Peoples R China
[2] Wuhan Univ, Sch Comp Sci, Wuhan 430079, Peoples R China
[3] Univ Extremadura, Escuela Politecn, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Caceres 10071, Spain
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2022年 / 60卷
基金
中国国家自然科学基金;
关键词
Hyperspectral imaging; Libraries; TV; Collaboration; Data mining; Sparse matrices; Indexes; Hyperspectral remote sensing; low rank; sparse unmixing (SU); superpixel segmentation; SIGNAL RECOVERY; ALGORITHM; NONLINEARITY; REGRESSION; IMAGES;
D O I
10.1109/TGRS.2022.3177636
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Sparse unmixing (SU) has been widely applied to remotely sensed hyperspectral images (HSIs) interpretation. Compared with traditional unmixing algorithms, SU does not need to extract pure signatures (endmembers) from the image. The endmember matrix is constructed by directly selecting spectra from a known library, which is used to estimate the fractional abundances associated with endmembers. This avoids the problem of extracting virtual endmembers without physical meaning. However, SU does not generally include spatial information, which may limit its performance. In order to address this limitation and include local spatial information, low-rank and sparse features in local regions can be exploited. In this article, we include spatial information in the traditional SU algorithm by extracting low-rank and spatial information based on superpixels and further propose an algorithm named superpixel-based collaborative sparse and low-rank regularization for SU (SCLRSU) to improve the performance of the traditional spatial regularization-based SU methods. In our proposed method, we combine superpixel segmentation and structural sparsity. Experiments are carried out on two simulated datasets and two real HSI datasets, and our results are compared with those obtained by traditional SU methods. Our results indicate that our newly proposed method provides very competitive performance.
引用
收藏
页数:16
相关论文
共 66 条
[1]   SLIC Superpixels Compared to State-of-the-Art Superpixel Methods [J].
Achanta, Radhakrishna ;
Shaji, Appu ;
Smith, Kevin ;
Lucchi, Aurelien ;
Fua, Pascal ;
Suesstrunk, Sabine .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (11) :2274-2281
[2]   Collaborative Sparse Regression Using Spatially Correlated Supports-Application to Hyperspectral Unmixing [J].
Altmann, Yoann ;
Pereyra, Marcelo ;
Bioucas-Dias, Jose .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (12) :5800-5811
[3]  
[Anonymous], 2003, Hyperspectral imaging: techniques for spectral detection and classification
[4]  
[Anonymous], 1995, SUMM 5 ANN JPL AIRB
[5]   Hyperspectral Unmixing Overview: Geometrical, Statistical, and Sparse Regression-Based Approaches [J].
Bioucas-Dias, Jose M. ;
Plaza, Antonio ;
Dobigeon, Nicolas ;
Parente, Mario ;
Du, Qian ;
Gader, Paul ;
Chanussot, Jocelyn .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (02) :354-379
[6]   Decoding by linear programming [J].
Candes, EJ ;
Tao, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2005, 51 (12) :4203-4215
[7]   Stable signal recovery from incomplete and inaccurate measurements [J].
Candes, Emmanuel J. ;
Romberg, Justin K. ;
Tao, Terence .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2006, 59 (08) :1207-1223
[8]   Enhancing Sparsity by Reweighted l1 Minimization [J].
Candes, Emmanuel J. ;
Wakin, Michael B. ;
Boyd, Stephen P. .
JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2008, 14 (5-6) :877-905
[9]   Progressive Band Processing of Fast Iterative Pixel Purity Index for Finding Endmembers [J].
Chang, Chein-I ;
Li, Yao ;
Wang, Yulei .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (09) :1464-1468
[10]   Constrained subpixel target detection for remotely sensed imagery [J].
Chang, CI ;
Heinz, DC .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2000, 38 (03) :1144-1159