Through-Plane Super-Resolution With Autoencoders in Diffusion Magnetic Resonance Imaging of the Developing Human Brain

被引:4
作者
Kebiri, Hamza [1 ,2 ,6 ]
Canales-Rodriguez, Erick J. [3 ]
Lajous, Helene [1 ,2 ,6 ]
de Dumast, Priscille [1 ,2 ,6 ]
Girard, Gabriel [1 ,2 ,3 ,6 ]
Aleman-Gomez, Yasser [1 ,6 ]
Koob, Meriam [1 ,6 ]
Jakab, Andras [4 ,5 ]
Bach Cuadra, Meritxell [1 ,2 ,3 ,6 ]
机构
[1] Lausanne Univ Hosp, Dept Radiol, Lausanne, Switzerland
[2] CIBM Ctr Biomed Imaging, Lausanne, Switzerland
[3] Ecole Polytech Fed Lausanne EPFL, Signal Proc Lab 5 LTS5, Lausanne, Switzerland
[4] Ctr MR Res Univ Childrens Hosp Zurich, Zurich, Switzerland
[5] Univ Zurich, Neurosci Ctr Zurich, Zurich, Switzerland
[6] Univ Lausanne, Lausanne, Switzerland
关键词
unsupervised learning; autoencoders; super-resolution; diffusion-weighted imaging; magnetic resonance imaging (MRI); pre-term neonates; fetuses; brain; FETAL-BRAIN; VOLUME RECONSTRUCTION; MRI; RESOLUTION; REGISTRATION; EFFICIENT; TRACTOGRAPHY; CONNECTOME;
D O I
10.3389/fneur.2022.827816
中图分类号
R74 [神经病学与精神病学];
学科分类号
摘要
Fetal brain diffusion magnetic resonance images (MRI) are often acquired with a lower through-plane than in-plane resolution. This anisotropy is often overcome by classical upsampling methods such as linear or cubic interpolation. In this work, we employ an unsupervised learning algorithm using an autoencoder neural network for single-image through-plane super-resolution by leveraging a large amount of data. Our framework, which can also be used for slice outliers replacement, overperformed conventional interpolations quantitatively and qualitatively on pre-term newborns of the developing Human Connectome Project. The evaluation was performed on both the original diffusion-weighted signal and the estimated diffusion tensor maps. A byproduct of our autoencoder was its ability to act as a denoiser. The network was able to generalize fetal data with different levels of motions and we qualitatively showed its consistency, hence supporting the relevance of pre-term datasets to improve the processing of fetal brain images.
引用
收藏
页数:16
相关论文
共 67 条
[1]  
Abadi M, 2016, PROCEEDINGS OF OSDI'16: 12TH USENIX SYMPOSIUM ON OPERATING SYSTEMS DESIGN AND IMPLEMENTATION, P265
[2]   Image quality transfer and applications in diffusion MRI [J].
Alexander, Daniel C. ;
Zikic, Darko ;
Ghosh, Aurobrata ;
Tanno, Ryutaro ;
Wottschel, Viktor ;
Zhang, Jiaying ;
Kaden, Enrico ;
Dyrby, Tim B. ;
Sotiropoulos, Stamatios N. ;
Zhang, Hui ;
Criminisi, Antonio .
NEUROIMAGE, 2017, 152 :283-298
[3]   Incorporating outlier detection and replacement into a non-parametric framework for movement and distortion correction of diffusion MR images [J].
Andersson, Jesper L. R. ;
Graham, Mark S. ;
Zsoldos, Eniko ;
Sotiropoulos, Stamatios N. .
NEUROIMAGE, 2016, 141 :556-572
[4]  
[Anonymous], 2013, Diffusion MRI: from quantitative measurement to in vivo neuroanatomy
[5]  
Avants BB., 2009, Insight j, V2, P1
[6]  
Basser PJ, 1996, J MAGN RESON SER B, V111, P209, DOI [10.1006/jmrb.1996.0086, 10.1016/j.jmr.2011.09.022]
[7]   Automated processing pipeline for neonatal diffusion MRI in the developing Human Connectome Project [J].
Bastiani, Matteo ;
Andersson, Jesper L. R. ;
Cordero-Grande, Lucilio ;
Murgasova, Maria ;
Hutter, Jana ;
Price, Anthony N. ;
Makropoulos, Antonios ;
Fitzgibbon, Sean P. ;
Hughes, Emer ;
Rueckert, Daniel ;
Victor, Suresh ;
Rutherford, Mary ;
Edwards, A. David ;
Smith, Stephen M. ;
Tournier, Jacques-Donald ;
Hajnal, Joseph V. ;
Jbabdi, Saad ;
Sotiropoulos, Stamatios N. .
NEUROIMAGE, 2019, 185 :750-763
[8]  
Berthelot D., 2018, INT C LEARN REPR, DOI [10.48550/arXiv.1807.07543, DOI 10.48550/ARXIV.1807.07543]
[9]   Microstructural development of human brain assessed in utero by diffusion tensor imaging [J].
Bui, Tony ;
Daire, Jean-Luc ;
Chalard, Francois ;
Zaccaria, Isabelle ;
Alberti, Corinne ;
Elmaleh, Monique ;
Garel, Catherine ;
Luton, Dominique ;
Blanc, Nathalie ;
Sebag, Guy .
PEDIATRIC RADIOLOGY, 2006, 36 (11) :1133-1140
[10]  
Chamberland M., 2021, NAT COMPUTAT SCI, V1, P598, DOI [10.1038/s43588-021-00126-8, DOI 10.1038/S43588-021-00126-8]