An explicit formula for the inverse of a pentadiagonal Toeplitz matrix

被引:19
作者
Wang, Chaojie [1 ]
Li, Hongyi [1 ]
Zhao, Di [1 ]
机构
[1] Beihang Univ, Sch Math & Syst Sci, LMIB, Beijing 100191, Peoples R China
基金
中国国家自然科学基金;
关键词
Inverse; Pentadiagonal matrix; Toeplitz matrix; Factorization; Sherman-Morrison-Woodbury inversion; BOUNDARY-VALUE METHODS; NUMERICAL RECIPES; EQUATION;
D O I
10.1016/j.cam.2014.08.010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we mainly consider finding an explicit formula for the inverse of a pentadiagonal Toeplitz matrix. For that purpose, we first factorize the modified form of a pentadiagonal Toeplitz matrix by two tridiagonal Toeplitz matrices, and then use the Sherman-Morrison-Woodbury inversion formula. As a result, an explicit inverse of a pentadiagonal Toeplitz matrix is obtained under certain assumptions. And numerical experiments are given to show the effectiveness of our results. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:12 / 18
页数:7
相关论文
共 22 条
[1]   Boundary Value Methods for the reconstruction of Sturm-Liouville potentials [J].
Aceto, Lidia ;
Ghelardoni, Paolo ;
Magherini, Cecilia .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (06) :2960-2974
[2]   PGSCM: A family of P-stable Boundary Value Methods for second-order initial value problems [J].
Aceto, Lidia ;
Ghelardoni, Paolo ;
Magherini, Cecilia .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2012, 236 (16) :3857-3868
[3]  
Alfaro M., 1995, NUMER ALGORITHMS, V10
[4]   The use of the factorization of five-diagonal matrices by tridiagonal Toeplitz matrices [J].
Diele, F ;
Lopez, L .
APPLIED MATHEMATICS LETTERS, 1998, 11 (03) :61-69
[5]   An application of the ADM to seven-order Sawada-Kotara equations [J].
El-Sayed, SM ;
Kaya, D .
APPLIED MATHEMATICS AND COMPUTATION, 2004, 157 (01) :93-101
[6]  
Fan S, 1989, Natural science journal of Hainan teachers college, P91
[7]  
Golub G.H., 2013, Matrix computations, V3
[8]  
Jia Jiteng, COMPUT MATH APPL, P116
[9]   An explicit and numerical solutions of some fifth-order KdV equation by decomposition method [J].
Kaya, D .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 144 (2-3) :353-363
[10]   Least squares solutions of the matrix equation AXB plus CYD = E with the least norm for symmetric arrowhead matrices [J].
Li, Hongyi ;
Gao, Zongsheng ;
Zhao, Di .
APPLIED MATHEMATICS AND COMPUTATION, 2014, 226 :719-724