Higher order recurrence relation for exceptional Charlier, Meixner, Hermite and Laguerre orthogonal polynomials

被引:33
作者
Duran, Antonio J. [1 ]
机构
[1] Univ Seville, Dept Anal Matemat, E-41080 Seville, Spain
关键词
differential operators; Hermite polynomials; difference operators; recurrence relations; orthogonal polynomials; Laguerre polynomials; Meixner polynomials; Charlier polynomials; exceptional orthogonal polynomial; 33E30; 33C45; 42C05; DIFFERENCE-EQUATIONS; FAMILIES; SYSTEMS;
D O I
10.1080/10652469.2015.1009455
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we prove in a constructing way that exceptional Charlier, Meixner, Hermite and Laguerre polynomials satisfy higher order recurrence relations. Our conjecture is that the recurrence relations provided in this paper have minimal order.
引用
收藏
页码:357 / 376
页数:20
相关论文
共 28 条
[1]   A MODIFICATION OF CRUMS METHOD [J].
ADLER, VE .
THEORETICAL AND MATHEMATICAL PHYSICS, 1994, 101 (03) :1381-1386
[2]   On sturm-liouville polynomial systems [J].
Bochner, S .
MATHEMATISCHE ZEITSCHRIFT, 1929, 29 :730-736
[3]  
Chihara Theodore S, 2011, An introduction to orthogonal polynomials
[4]  
Christoffel EB., 1858, Crelles Journal, V55, P61
[5]   Admissibility condition for exceptional Laguerre polynomials [J].
Duran, Antonio J. ;
Perez, Mario .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 424 (02) :1042-1053
[6]   Constructing bispectral dual Hahn polynomials [J].
Duran, Antonio J. .
JOURNAL OF APPROXIMATION THEORY, 2015, 189 :1-28
[7]   Constructing Bispectral Orthogonal Polynomials from the Classical Discrete Families of Charlier, Meixner and Krawtchouk [J].
Duran, Antonio J. ;
de la Iglesia, Manuel D. .
CONSTRUCTIVE APPROXIMATION, 2015, 41 (01) :49-91
[8]   Exceptional Meixner and Laguerre orthogonal polynomials [J].
Duran, Antonio J. .
JOURNAL OF APPROXIMATION THEORY, 2014, 184 :176-208
[9]   Exceptional Charlier and Hermite orthogonal polynomials [J].
Duran, Antonio J. .
JOURNAL OF APPROXIMATION THEORY, 2014, 182 :29-58
[10]   Using D-operators to construct orthogonal polynomials satisfying higher order difference or differential equations [J].
Duran, Antonio J. .
JOURNAL OF APPROXIMATION THEORY, 2013, 174 :10-53