COMBINATORIAL CONVOLUTION SUMS DERIVED FROM DIVISOR FUNCTIONS AND FAULHABER SUMS

被引:1
作者
Cho, Bumkyu [1 ]
Kim, Daeyeoul [1 ]
Park, Ho [1 ]
机构
[1] Dongguk Univ Seoul, Nat Inst Math Sci, Seoul, South Korea
关键词
Divisor functions; convolution sums; Faulhaber's sum;
D O I
10.3336/gm.49.2.09
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is known that certain convolution sums using Liouville identity can be expressed as a combination of divisor functions and Bernoulli numbers. In this article we find seven combinatorial convolution sums derived from divisor functions and Bernoulli numbers.
引用
收藏
页码:351 / 367
页数:17
相关论文
共 11 条
[1]  
Berndt B. C., 1989, Ramanujan's Notebooks Part II
[2]  
Cheng N., 2005, YOKOHAMA MATH J, V52, P39
[3]   Evaluation of a certain combinatorial convolution sum in higher level cases [J].
Cho, Bumkyu ;
Kim, Daeyeoul ;
Park, Ho .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 406 (01) :203-210
[4]  
Huard JG, 2002, NUMBER THEORY FOR THE MILLENNIUM II, P229
[5]   CONVOLUTION SUMS ARISING FROM DIVISOR FUNCTIONS [J].
Kim, Aeran ;
Kim, Daeyeoul ;
Yan, Li .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2013, 50 (02) :331-360
[6]   Bernoulli numbers, convolution sums and congruences of coefficients for certain generating functions [J].
Kim, Daeyeoul ;
Kim, Aeran ;
Sankaranarayanan, Ayyadurai .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2013,
[7]   Convolution identities for twisted Eisenstein series and twisted divisor functions [J].
Kim, Daeyeoul ;
Bayad, Abdelmejid .
FIXED POINT THEORY AND APPLICATIONS, 2013,
[8]  
Lahiri D. B., 1946, Bull.Calcutta Math. Soc., V38, P193
[9]  
Melfi G, 1998, NUMBER THEORY, P371
[10]  
Nesge Extrait d'une Lettre de M. Besge a M, 1862, J MATH APPL 7, V7, P256