Vortices in a stochastic parabolic Ginzburg-Landau equation

被引:3
|
作者
Chugreeva, Olga [1 ]
Melcher, Christof [2 ]
机构
[1] Rhein Westfal TH Aachen, Lehrstuhl I Math, Pontdriesch 14-16, D-52056 Aachen, Germany
[2] Rhein Westfal TH Aachen, Lehrstuhl I Math & JARA Fundamentals Future Infor, Pontdriesch 14-16, D-52056 Aachen, Germany
来源
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS | 2017年 / 5卷 / 01期
关键词
Stochastic Ginzburg-Landau equation; Multiplicative noise; Stochastic Ginzburg-Landau vortices; ORDINARY DIFFERENTIAL-EQUATIONS; MULTIPLICATIVE NOISE; VORTEX DYNAMICS; EXISTENCE; FLOWS; CONVERGENCE; ENERGY; FIELDS; SPACES;
D O I
10.1007/s40072-016-0083-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the variant of a stochastic parabolic Ginzburg-Landau equation that allows for the formation of point defects of the solution. The noise in the equation is multiplicative of the gradient type. We show that the family of the Jacobians associated to the solution is tight on a suitable space of measures. Our main result is the characterization of the limit points of this family. They are concentrated on finite sums of delta measures with integer weights. The point defects of the solution coincide with the points at which the delta measures are centered.
引用
收藏
页码:113 / 143
页数:31
相关论文
共 50 条
  • [1] Vortices in a stochastic parabolic Ginzburg-Landau equation
    Olga Chugreeva
    Christof Melcher
    Stochastics and Partial Differential Equations: Analysis and Computations, 2017, 5 : 113 - 143
  • [2] Approximations of the solution of a stochastic Ginzburg-Landau equation
    Breckner, Brigitte E.
    Lisei, Hannelore
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2021, 66 (02): : 307 - 319
  • [3] The exact solutions of the stochastic Ginzburg-Landau equation
    Mohammed, Wael W.
    Ahmad, Hijaz
    Hamza, Amjad E.
    ALy, E. S.
    El-Morshedy, M.
    Elabbasy, E. M.
    RESULTS IN PHYSICS, 2021, 23
  • [4] Ginzburg-Landau Vortices Driven by the Landau-Lifshitz-Gilbert Equation
    Kurzke, Matthias
    Melcher, Christof
    Moser, Roger
    Spirn, Daniel
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2011, 199 (03) : 843 - 888
  • [5] DYNAMICS OF VORTICES FOR THE COMPLEX GINZBURG-LANDAU EQUATION
    Miot, Evelyne
    ANALYSIS & PDE, 2009, 2 (02): : 159 - 186
  • [6] A stochastic Ginzburg-Landau equation with impulsive effects
    Nguyen Tien Dung
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (09) : 1962 - 1971
  • [7] Global solution for a stochastic Ginzburg-Landau equation with multiplicative noise
    Barton-Smith, M
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2004, 22 (01) : 1 - 18
  • [8] On the generalized 2-D stochastic Ginzburg-Landau equation
    De Sheng Yang
    Acta Mathematica Sinica, English Series, 2010, 26 : 1601 - 1612
  • [9] On the generalized 2-D stochastic Ginzburg-Landau equation
    Yang, De Sheng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (08) : 1601 - 1612
  • [10] On the Generalized 2-D Stochastic Ginzburg-Landau Equation
    De Sheng YANG School of Mathematical Sciences and Computing Technology
    ActaMathematicaSinica(EnglishSeries), 2010, 26 (08) : 1601 - 1612