Improving multi-target cooperative tracking guidance for UAV swarms using multi-agent reinforcement learning

被引:45
|
作者
Zhou, Wenhong [1 ]
LI, Jie [1 ]
Liu, Zhihong [1 ]
Shen, Lincheng [1 ]
机构
[1] Natl Univ Def Technol, Coll Intelligence Sci & Technol, Changsha 410073, Peoples R China
基金
中国国家自然科学基金;
关键词
Decentralized cooperation; Maximum reciprocal reward; Multi-agent actor-critic; Pointwise mutual informa-; Reinforcement learning; ALGORITHMS; SEARCH; ROBOTS; GAMES;
D O I
10.1016/j.cja.2021.09.008
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Multi-Target Tracking Guidance (MTTG) in unknown environments has great potential values in applications for Unmanned Aerial Vehicle (UAV) swarms. Although Multi-Agent Deep Reinforcement Learning (MADRL) is a promising technique for learning cooperation, most of the existing methods cannot scale well to decentralized UAV swarms due to their computational complexity or global information requirement. This paper proposes a decentralized MADRL method using the maximum reciprocal reward to learn cooperative tracking policies for UAV swarms. This method reshapes each UAV's reward with a regularization term that is defined as the dot product of the reward vector of all neighbor UAVs and the corresponding dependency vector between the UAV and the neighbors. And the dependence between UAVs can be directly captured by the Pointwise Mutual Information (PMI) neural network without complicated aggregation statistics. Then, the experience sharing Reciprocal Reward Multi-Agent Actor-Critic (MAAC-R) algorithm is proposed to learn the cooperative sharing policy for all homogeneous UAVs. Experiments demonstrate that the proposed algorithm can improve the UAVs' cooperation more effectively than the baseline algorithms, and can stimulate a rich form of cooperative tracking behaviors of UAV swarms. Besides, the learned policy can better scale to other scenarios with more UAVs and targets. (c) 2021 Chinese Society of Aeronautics and Astronautics. Production and hosting by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:100 / 112
页数:13
相关论文
共 50 条
  • [41] Cooperative Multi-Agent Reinforcement Learning with Hypergraph Convolution
    Bai, Yunpeng
    Gong, Chen
    Zhang, Bin
    Fan, Guoliang
    Hou, Xinwen
    Lu, Yu
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [42] Multi-agent Cooperative Search based on Reinforcement Learning
    Sun, Yinjiang
    Zhang, Rui
    Liang, Wenbao
    Xu, Cheng
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON UNMANNED SYSTEMS (ICUS), 2020, : 891 - 896
  • [43] Distributed Multi-agent Target Search and Tracking With Gaussian Process and Reinforcement Learning
    Kim, Jigang
    Jang, Dohyun
    Kim, H. Jin
    INTERNATIONAL JOURNAL OF CONTROL AUTOMATION AND SYSTEMS, 2023, 21 (09) : 3057 - 3067
  • [44] Levels of Realism for Cooperative Multi-agent Reinforcement Learning
    Cunningham, Bryan
    Cao, Yong
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT I, 2012, 7331 : 573 - 582
  • [45] Cooperative Multi-agent Reinforcement Learning for Inventory Management
    Khirwar, Madhav
    Gurumoorthy, Karthik S.
    Jain, Ankit Ajit
    Manchenahally, Shantala
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: APPLIED DATA SCIENCE AND DEMO TRACK, ECML PKDD 2023, PT VI, 2023, 14174 : 619 - 634
  • [46] The Cooperative Reinforcement Learning in a Multi-Agent Design System
    Liu, Hong
    Wang, Jihua
    PROCEEDINGS OF THE 2013 IEEE 17TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2013, : 139 - 144
  • [47] Cooperative Multi-Agent Reinforcement Learning in Express System
    Li, Yexin
    Zheng, Yu
    Yang, Qiang
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 805 - 814
  • [48] A review of cooperative multi-agent deep reinforcement learning
    Afshin Oroojlooy
    Davood Hajinezhad
    Applied Intelligence, 2023, 53 : 13677 - 13722
  • [49] A review of cooperative multi-agent deep reinforcement learning
    Oroojlooy, Afshin
    Hajinezhad, Davood
    APPLIED INTELLIGENCE, 2023, 53 (11) : 13677 - 13722
  • [50] Distributed Multi-agent Target Search and Tracking With Gaussian Process and Reinforcement Learning
    Jigang Kim
    Dohyun Jang
    H. Jin Kim
    International Journal of Control, Automation and Systems, 2023, 21 : 3057 - 3067