Radon transform on real, complex, and quaternionic Grassmannians

被引:11
作者
Zhang, Genkai [1 ]
机构
[1] Chalmers, Dept Math Sci, SE-41296 Gothenburg, Sweden
[2] Univ Gothenburg, SE-41296 Gothenburg, Sweden
关键词
D O I
10.1215/S0012-7094-07-13814-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G(n,k)(K) be the Grassniannian manifold of k-diniensional K-subspaces in K-n, where K = R, C, H is thefield of real, complex, or quaternionic numbers. For 1 <= k < k' <= n - 1, we define the Radon transform (Rf)(eta), n epsilon G(n,k') (K), for functions f (xi) on G(n,k)(K) as an integration over all xi subset of eta. When k + k' <= n, we give an inversion formula in terms of the Garding-Gindikin fractional integration and the Cavley-type differential operator on the symmetric cone of positive (k x k)-matrices over K. This generalizes the recent results of Grinberg and Rubin [4] for real Grassmannians.
引用
收藏
页码:137 / 160
页数:24
相关论文
共 13 条
[1]  
[Anonymous], PURE APPL MATH
[2]   BESSEL-FUNCTIONS ASSOCIATED WITH REPRESENTATIONS OF FORMALLY REAL JORDAN ALGEBRAS [J].
FARAUT, J ;
TRAVAGLINI, G .
JOURNAL OF FUNCTIONAL ANALYSIS, 1987, 71 (01) :123-141
[3]  
Faraut J., 1994, OXFORD MATH MONOGR
[4]   Radon inversion on Grassmannians via Garding-Gindikin fractional integrals [J].
Grinberg, EL ;
Rubin, B .
ANNALS OF MATHEMATICS, 2004, 159 (02) :783-817
[5]  
GRINBERG EL, 1986, J DIFFER GEOM, V24, P53
[6]   Radon, cosine and sine transforms on real hyperbolic space [J].
Helgason, S .
ADVANCES IN MATHEMATICS, 2005, 192 (01) :225-225
[7]  
Helgason S., 1999, Progress in mathematics, V5
[8]  
Helgason S., 1978, PURE APPL MATH, V80
[9]   BESSEL FUNCTIONS OF MATRIX ARGUMENT [J].
HERZ, CS .
ANNALS OF MATHEMATICS, 1955, 61 (03) :474-523
[10]   Integral geometry on Grassmann manifolds and calculus of invariant differential operators [J].
Kakehi, T .
JOURNAL OF FUNCTIONAL ANALYSIS, 1999, 168 (01) :1-45