ANTI-PERIODIC SOLUTIONS FOR HIGHER-ORDER NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS

被引:2
作者
Chen, Tai Yong [1 ]
Liu, Wen Bin [1 ]
Zhang, Jian Jun [1 ]
Zhang, Hui Xing [1 ]
机构
[1] China Univ Min & Technol, Dept Math, Xuzhou 221008, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
higher-order differential equation; anti-periodic solution; Leray-Schauder principle; PERIODIC-SOLUTIONS; PENDULUM; EXISTENCE;
D O I
10.4134/JKMS.2010.47.3.573
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the existence of anti-periodic solutions for higher-order nonlinear ordinary differential equations is studied by using degree theory and some known results are improved to some extent
引用
收藏
页码:573 / 583
页数:11
相关论文
共 12 条
[1]   ON A CLASS OF 2ND-ORDER ANTIPERIODIC BOUNDARY-VALUE-PROBLEMS [J].
AFTABIZADEH, AR ;
AIZICOVICI, S ;
PAVEL, NH .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1992, 171 (02) :301-320
[2]  
[Anonymous], 1985, NONLINEAR FUNCTIONAL
[3]  
[陈太勇 Chen Taiyong], 2007, [数学研究, Journal of Mathematical Study], V40, P187
[4]  
Cong FZ, 2000, J MATH ANAL APPL, V241, P1
[5]  
Hardy Godfrey Harold, 1952, Inequalities, V2nd
[6]  
LI BW, 2004, ACTA MATH SINICA, V47, P1133
[7]  
Li WG, 2001, J MATH ANAL APPL, V259, P157
[8]  
LIU WB, 2003, ACTA MATH SINICA, V46, P49
[9]   MULTIPLE SOLUTIONS OF THE PERIODIC BOUNDARY-VALUE PROBLEM FOR SOME FORCED PENDULUM-TYPE EQUATIONS [J].
MAWHIN, J ;
WILLEM, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1984, 52 (02) :264-287
[10]   Existence of an anti-periodic solution for the quasilinear wave equation with viscosity [J].
Nakao, M .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1996, 204 (03) :754-764