On the uniqueness of solutions of a nonlocal elliptic system

被引:18
作者
Wang, Kelei [1 ,2 ]
Wei, Juncheng [3 ,4 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Computat Sci Hubei Key Lab, Wuhan 430072, Peoples R China
[3] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[4] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
MODELING PHASE-SEPARATION; FRACTIONAL DIFFUSION; STRONG COMPETITION; SEGREGATION; REGULARITY; EQUATIONS;
D O I
10.1007/s00208-015-1271-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the following elliptic system with fractional Laplacian -(-Delta)(s)u = uv(2), -(-Delta)(s) v = vu(2), u, v > 0 on R-n, where s is an element of (0, 1) and (-Delta)(s) is the s-Lapalcian. We first prove that all positive solutions must have polynomial bound. Then we use the Almgren monotonicity formula to perform a blown- down analysis. Finally we use the method of moving planes to prove the uniqueness of the one dimensional profile, up to translation and scaling.
引用
收藏
页码:105 / 153
页数:49
相关论文
共 26 条