On the uniqueness of solutions of a nonlocal elliptic system

被引:19
作者
Wang, Kelei [1 ,2 ]
Wei, Juncheng [3 ,4 ]
机构
[1] Wuhan Univ, Sch Math & Stat, Wuhan 430072, Peoples R China
[2] Wuhan Univ, Computat Sci Hubei Key Lab, Wuhan 430072, Peoples R China
[3] Univ British Columbia, Dept Math, Vancouver, BC V6T 1Z2, Canada
[4] Chinese Univ Hong Kong, Dept Math, Shatin, Hong Kong, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
MODELING PHASE-SEPARATION; FRACTIONAL DIFFUSION; STRONG COMPETITION; SEGREGATION; REGULARITY; EQUATIONS;
D O I
10.1007/s00208-015-1271-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the following elliptic system with fractional Laplacian -(-Delta)(s)u = uv(2), -(-Delta)(s) v = vu(2), u, v > 0 on R-n, where s is an element of (0, 1) and (-Delta)(s) is the s-Lapalcian. We first prove that all positive solutions must have polynomial bound. Then we use the Almgren monotonicity formula to perform a blown- down analysis. Finally we use the method of moving planes to prove the uniqueness of the one dimensional profile, up to translation and scaling.
引用
收藏
页码:105 / 153
页数:49
相关论文
共 26 条
[1]  
[Anonymous], 1994, C P LECT NOTES GEOME
[2]  
Applebaum D., 2004, Notices Am. Math. Soc, V51, P1336
[3]   On entire solutions of an elliptic system modeling phase separations [J].
Berestycki, Henri ;
Terracini, Susanna ;
Wang, Kelei ;
Wei, Juncheng .
ADVANCES IN MATHEMATICS, 2013, 243 :102-126
[4]   On Phase-Separation Models: Asymptotics and Qualitative Properties [J].
Berestycki, Henri ;
Lin, Tai-Chia ;
Wei, Juncheng ;
Zhao, Chunyi .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2013, 208 (01) :163-200
[5]  
CABRE X, ARXIV11110796
[6]   Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries [J].
Caffarelli, L. A. ;
Lin, Fang-Hua .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2008, 21 (03) :847-862
[7]   The geometry of solutions to a segregation problem for nondivergence systems [J].
Caffarelli, L. A. ;
Karakhanyan, A. L. ;
Lin, Fang-Hua .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2009, 5 (02) :319-351
[8]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[9]   Asymptotic estimates for the spatial segregation of competitive systems [J].
Conti, M ;
Terracini, S ;
Verzini, G .
ADVANCES IN MATHEMATICS, 2005, 195 (02) :524-560
[10]   THE LOCAL REGULARITY OF SOLUTIONS OF DEGENERATE ELLIPTIC-EQUATIONS [J].
FABES, EB ;
KENIG, CE ;
SERAPIONI, RP .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1982, 7 (01) :77-116