Rotational Hypersurfaces Satisfying ΔIR = AR in the Four-Dimensional Euclidean Space

被引:12
|
作者
Guler, Erhan [1 ]
机构
[1] Bartin Univ, Fac Sci, Dept Math, TR-74100 Bartin, Turkey
来源
关键词
4-dimensional Euclidean space; Laplace-Beltrami operator; rotational hypersurface; curvature; SURFACES;
D O I
10.2339/politeknik.670333
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this study, rotational hypersurfaces in the 4-dimensional Euclidean space are discussed. Some relations of curvatures of hypersurfaces are given, such as the mean, Gaussian, and their minimality and flatness. In addition, Laplace-Beltrami operator has been defined for 4-dimensional hypersurfaces depending on the first fundamental form. Moreover, it is shown that each element of the 4 x 4 order matrix A, which satisfies the condition Delta R-I = AR, is zero, that is, the rotational hypersurface R is minimal.
引用
收藏
页码:517 / 520
页数:4
相关论文
共 50 条
  • [1] On four dimensional Dupin hypersurfaces in Euclidean space
    Riveros, CMC
    Tenenblat, K
    ANAIS DA ACADEMIA BRASILEIRA DE CIENCIAS, 2003, 75 (01): : 1 - 7
  • [2] Harmonic superspace with four-dimensional Euclidean space
    McKeon, DGC
    CANADIAN JOURNAL OF PHYSICS, 2000, 78 (04) : 261 - 266
  • [3] On the theory of surfaces in the four-dimensional Euclidean space
    Ganchev, Georgi
    Milousheva, Velichka
    KODAI MATHEMATICAL JOURNAL, 2008, 31 (02) : 183 - 198
  • [4] Spinors and supersymmetry in four-dimensional euclidean space
    McKeon, DGC
    Sherry, TN
    ANNALS OF PHYSICS, 2001, 288 (01) : 2 - 36
  • [5] Extended supersymmetry in four-dimensional Euclidean space
    McKeon, DGC
    Sherry, TN
    ANNALS OF PHYSICS, 2000, 285 (02) : 221 - 236
  • [6] Rotational hypersurfaces family satisfying Ln-3G=AG in the n-dimensional Euclidean space
    Guler, Erhan
    Turgay, Nurettin Cenk
    ADVANCES IN APPLIED MATHEMATICS, 2025, 167
  • [7] Quasi-minimal rotational surfaces in pseudo-Euclidean four-dimensional space
    Ganchev, Georgi
    Milousheva, Velichka
    CENTRAL EUROPEAN JOURNAL OF MATHEMATICS, 2014, 12 (10): : 1586 - 1601
  • [8] Polarisation of electromagnetic waves in four-dimensional euclidean space
    Ivaska, V
    Aleksiejünas, R
    MIKON-2000, VOLS 1 & 2, PROCEEDINGS, 2000, : 91 - 93
  • [9] NONHOLONOMIC TORSES OF THE SECOND KIND IN THE FOUR-DIMENSIONAL EUCLIDEAN SPACE
    Tsokolova, Olga Vyacheslavovna
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2012, (18): : 33 - 51
  • [10] NON-HOLONOMIK HYPERPLANE IN THE FOUR-DIMENSIONAL EUCLIDEAN SPACE
    Onishuk, N. M.
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-MATEMATIKA I MEKHANIKA-TOMSK STATE UNIVERSITY JOURNAL OF MATHEMATICS AND MECHANICS, 2008, (04): : 10 - +