Generating optical frequency combs via nanoscale photonic structures

被引:0
作者
Francis, Henry [1 ]
Chen, Si [1 ]
Che, Kai-Jun [2 ]
Zhang, Xiao-Dong [3 ]
Hopkinson, Mark [1 ]
Jin, Chao-Yuan [1 ,3 ]
机构
[1] Univ Sheffield, Dept Elect & Elect Engn, Sheffield S3 7HQ, S Yorkshire, England
[2] Xiamen Univ, Dept Elect Engn, Xiamen 361005, Fujian, Peoples R China
[3] Zhejiang Univ, Coll Informat Sci & Elect Engn, Hangzhou 310007, Peoples R China
来源
PHYSICS AND SIMULATION OF OPTOELECTRONIC DEVICES XXVIII | 2020年 / 11274卷
基金
英国工程与自然科学研究理事会;
关键词
Optical frequency comb; photonic crystal; all-optical modulation; microwave photonics; NANOCAVITY; FLAT;
D O I
10.1117/12.2546061
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In this paper, a novel method to generate optical frequency combs (OFCs) using nanoscale structures is explored. The growing demand for on-chip photonic processing dictates the need for multi-wavelength light sources, such as OFCs, that can be densely integrated with low processing power. Photonic crystal structues provide a viable method to generate all-optical modulation with sub-femto joule switching power and high density integration potential. This method of all-optical modulation is utilised here to generate an OFC from photonic crystal nanocavities and waveguides. Very-flat-topped optical frequency combs with a small intensity variation can be generated based on theoretical predictions via detailed analysis of coupled mode theory for photonic crystal nanocavities and waveguides.
引用
收藏
页数:8
相关论文
共 25 条
  • [11] Joannopoulos JD, 2008, PHOTONIC CRYSTALS: MOLDING THE FLOW OF LIGHT, 2ND EDITION, P1
  • [12] Microresonator-Based Optical Frequency Combs
    Kippenberg, T. J.
    Holzwarth, R.
    Diddams, S. A.
    [J]. SCIENCE, 2011, 332 (6029) : 555 - 559
  • [13] Microresonator-based solitons for massively parallel coherent optical communications
    Marin-Palomo, Pablo
    Kemal, Juned N.
    Karpov, Maxim
    Kordts, Arne
    Pfeifle, Joerg
    Pfeiffer, Martin H. P.
    Trocha, Philipp
    Wolf, Stefan
    Brasch, Victor
    Anderson, Miles H.
    Rosenberger, Ralf
    Vijayan, Kovendhan
    Freude, Wolfgang
    Kippenberg, Tobias J.
    Koos, Christian
    [J]. NATURE, 2017, 546 (7657) : 274 - +
  • [14] Integrated microwave photonics
    Marpaung, David
    Yao, Jianping
    Capmany, Jose
    [J]. NATURE PHOTONICS, 2019, 13 (02) : 80 - 90
  • [15] Ultra-fast photonic crystal/quantum dot all-optical switch for future photonic networks
    Nakamura, H
    Sugimoto, Y
    Kanamoto, K
    Ikeda, N
    Tanaka, Y
    Nakamura, Y
    Ohkouchi, S
    Watanabe, Y
    Inoue, K
    Ishikawa, H
    Asakawa, K
    [J]. OPTICS EXPRESS, 2004, 12 (26): : 6606 - 6614
  • [16] Nonlinear optical phase shift in InAs quantum dots measured by a unique two-color pump/probe ellipsometric polarization analysis
    Nakamura, H
    Kanamoto, K
    Nakamura, Y
    Ohkouchi, S
    Ishikawa, H
    Asakawa, K
    [J]. JOURNAL OF APPLIED PHYSICS, 2004, 96 (03) : 1425 - 1434
  • [17] Nozaki K, 2010, NAT PHOTONICS, V4, P477, DOI [10.1038/NPHOTON.2010.89, 10.1038/nphoton.2010.89]
  • [18] Third-harmonic generation in InAs/GaAs self-assembled quantum dots
    Sauvage, S
    Boucaud, P
    Glotin, F
    Prazeres, R
    Ortega, JM
    Lemaître, A
    Gérard, JM
    Thierry-Mieg, V
    [J]. PHYSICAL REVIEW B, 1999, 59 (15): : 9830 - 9833
  • [19] A flat and broadband optical frequency comb with tunable bandwidth and frequency spacing
    Shang, Lei
    Wen, Aijun
    Lin, Guibin
    Gao, Yongsheng
    [J]. OPTICS COMMUNICATIONS, 2014, 331 : 262 - 266
  • [20] Optical frequency comb technology for ultra-broadband radio-frequency photonics
    Torres-Company, Victor
    Weiner, Andrew M.
    [J]. LASER & PHOTONICS REVIEWS, 2014, 8 (03) : 368 - 393