Integer and fractional packings in dense 3-uniform hypergraphs

被引:11
作者
Haxell, P [1 ]
Nagle, B
Rödl, V
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[3] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
关键词
integer and fractional packings; regularity lemma for hypergraphs;
D O I
10.1002/rsa.10075
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let J(o) be any fixed 3-uniform hypergraph. For a 3-uniform hypergraph H we define v(jo)(H) to be the maximum size of a set of pairwise triple-disjoint copies of j(o) in H. We say a function psi from the set of copies of j(o) in X to [0, 1] is a fractional J(o)-packing of H if Sigma(gis an element ofe) psi(j) less than or equal to 1 for every triple e of H. Then v(jo)*(H) is defined to be the maximum value of Sigma(gis an element of)((H)(jo)) psi(J) over all fractional J(o)-packings psi of H. We show that v(Jo)*(H) - v(Jo)(H) = o(\V(H)\(3) for all 3-uniform hypergraphs H. This extends the analogous result for graphs, proved by Haxell and Rodl (2001), and requires a significant amount of new theory about regularity of 3-uniform hypergraphs. In particular, we prove a result that we call the Extension Theorem. This states that if a k-partite 3-uniform hypergraph is regular [in the sense of the hypergraph regularity lemma of Frankl and Rbdl (2002)], then almostevery triple is in about the same number of copies of K (3) (the complete 3-uniform hypergraph with k vertices). (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:248 / 310
页数:63
相关论文
共 15 条
[11]  
Kahn J, 1996, RANDOM STRUCT ALGOR, V8, P149, DOI 10.1002/(SICI)1098-2418(199603)8:2<149::AID-RSA5>3.0.CO
[12]  
2-Y
[13]  
NAGLE B, IN PRESS RANDOM STRU
[14]  
NAGLE B, 1999, THESIS EMORY U ATLAN
[15]  
Szemeredi E., 1978, Problemes combinatoires et theorie des graphes, V260, P399