Integer and fractional packings in dense 3-uniform hypergraphs

被引:11
作者
Haxell, P [1 ]
Nagle, B
Rödl, V
机构
[1] Univ Waterloo, Dept Combinator & Optimizat, Waterloo, ON N2L 3G1, Canada
[2] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
[3] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
关键词
integer and fractional packings; regularity lemma for hypergraphs;
D O I
10.1002/rsa.10075
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Let J(o) be any fixed 3-uniform hypergraph. For a 3-uniform hypergraph H we define v(jo)(H) to be the maximum size of a set of pairwise triple-disjoint copies of j(o) in H. We say a function psi from the set of copies of j(o) in X to [0, 1] is a fractional J(o)-packing of H if Sigma(gis an element ofe) psi(j) less than or equal to 1 for every triple e of H. Then v(jo)*(H) is defined to be the maximum value of Sigma(gis an element of)((H)(jo)) psi(J) over all fractional J(o)-packings psi of H. We show that v(Jo)*(H) - v(Jo)(H) = o(\V(H)\(3) for all 3-uniform hypergraphs H. This extends the analogous result for graphs, proved by Haxell and Rodl (2001), and requires a significant amount of new theory about regularity of 3-uniform hypergraphs. In particular, we prove a result that we call the Extension Theorem. This states that if a k-partite 3-uniform hypergraph is regular [in the sense of the hypergraph regularity lemma of Frankl and Rbdl (2002)], then almostevery triple is in about the same number of copies of K (3) (the complete 3-uniform hypergraph with k vertices). (C) 2003 Wiley Periodicals, Inc.
引用
收藏
页码:248 / 310
页数:63
相关论文
共 15 条
  • [1] Arora S., 1995, Proceedings of the Twenty-Seventh Annual ACM Symposium on the Theory of Computing, P284, DOI 10.1145/225058.225140
  • [2] Constructive quasi-Ramsey numbers and tournament ranking
    Czygrinow, A
    Poljak, S
    Rödl, V
    [J]. SIAM JOURNAL ON DISCRETE MATHEMATICS, 1999, 12 (01) : 48 - 63
  • [3] Dor D., 1992, Proceedings of the Twenty-Fourth Annual ACM Symposium on the Theory of Computing, P252, DOI 10.1145/129712.129737
  • [4] A FAST APPROXIMATION ALGORITHM FOR COMPUTING THE FREQUENCIES OF SUBGRAPHS IN A GIVEN GRAPH
    DUKE, RA
    LEFMANN, H
    RODL, V
    [J]. SIAM JOURNAL ON COMPUTING, 1995, 24 (03) : 598 - 620
  • [5] Extremal problems on set systems
    Frankl, P
    Rödl, V
    [J]. RANDOM STRUCTURES & ALGORITHMS, 2002, 20 (02) : 131 - 164
  • [6] Frankl P., 1985, EUROPEAN J COMBIN, V6, P317
  • [7] The regularity Lemma and approximation schemes for dense problems
    Frieze, A
    Kannan, R
    [J]. 37TH ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, PROCEEDINGS, 1996, : 12 - 20
  • [8] Quick approximation to matrices and applications
    Frieze, A
    Kannan, R
    [J]. COMBINATORICA, 1999, 19 (02) : 175 - 220
  • [9] Integer and fractional packings in dense graphs
    Haxell, PE
    Rödl, V
    [J]. COMBINATORICA, 2001, 21 (01) : 13 - 38
  • [10] Janson S, 2000, WIL INT S D, DOI 10.1002/9781118032718