Exact traveling wave solutions and dynamical behavior for the (n+1)-dimensional multiple sine-Gordon equation

被引:12
作者
Li, Ji-bin [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[2] Kunming Univ Sci & Technol, Kunming 650093, Peoples R China
来源
SCIENCE IN CHINA SERIES A-MATHEMATICS | 2007年 / 50卷 / 02期
关键词
nonlinear wave; bifurcation; exact explicit traveling wave solution; double sine-Gordon equation; multiple sine-Gordon equation;
D O I
10.1007/s11425-007-2078-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the methods of dynamical systems for the (n + 1)-dimensional multiple sine-Gordon equation, the existences of uncountably infinite many periodic wave solutions and breaking bounded wave solutions are obtained. For the double sine-Gordon equation, the exact explicit parametric representations of the bounded traveling solutions are given. To guarantee the existence of the above solutions, all parameter conditions are determined.
引用
收藏
页码:153 / 164
页数:12
相关论文
共 4 条
[1]   Bounded travelling wave solutions for the (n+1)-dimensional sine- and sinh-Gordon equations [J].
Li, JB ;
Li, M .
CHAOS SOLITONS & FRACTALS, 2005, 25 (05) :1037-1047
[2]   Traveling wave solutions for a class of nonlinear dispersive equations [J].
Li, JB ;
Liu, ZR .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2002, 23 (03) :397-418
[3]   Smooth and non-smooth traveling waves in a nonlinearly dispersive equation [J].
Li, JB ;
Liu, ZR .
APPLIED MATHEMATICAL MODELLING, 2000, 25 (01) :41-56
[4]   The tanh method and a variable separated ODE method for solving double sine-Gordon equation [J].
Wazwaz, AM .
PHYSICS LETTERS A, 2006, 350 (5-6) :367-370