Carbon Nanodot-Sensitized Modulation of Alzheimer's -Amyloid Self-Assembly, Disassembly, and Toxicity

被引:73
作者
Chung, You Jung [1 ]
Kim, Kayoung [1 ]
Lee, Byung Il [1 ]
Park, Chan Beum [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, 291 Daehak Ro, Daejeon 34141, South Korea
基金
新加坡国家研究基金会;
关键词
Alzheimer's disease; -amyloid; carbon nanodots; disassembly; self-assembly; GRAPHENE QUANTUM DOTS; FLUORESCENT CARBON; BETA-PEPTIDE; AGGREGATION; PHOTOLUMINESCENCE; NANOPARTICLES; SOLUBILITY; MECHANISM; NITROGEN;
D O I
10.1002/smll.201700983
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The self-assembly of amyloidogenic peptides into -sheet-rich aggregates is a general feature of many neurodegenerative diseases, including Alzheimer's disease, which signifies the need for the effective attenuation of amyloid aggregation toward alleviating amyloid-associated neurotoxicity. This study reports that photoluminescent carbon nanodots (CDs) can effectively suppress Alzheimer's -amyloid (A) self-assembly and function as a -sheet breaker disintegrating preformed A aggregates. This study synthesizes CDs using ammonium citrate through one-pot hydrothermal treatment and passivates their surface with branched polyethylenimine (bPEI). The bPEI-coated CDs (bPEI@CDs) exhibit hydrophilic and cationic surface characteristics, which interact with the negatively charged residues of A peptides, suppressing the aggregation of A peptides. Under light illumination, bPEI@CDs display a more pronounced effect on A aggregation and on the dissociation of -sheet-rich assemblies through the generation of reactive oxygen species from photoactivated bPEI@CDs. The light-triggered attenuation effect of A aggregation using a series of experiments, including photochemical and microscopic analysis, is verified. Furthermore, the cell viability test confirms the ability of photoactivated bPEI@CDs for the suppression of A-mediated cytotoxicity, indicating bPEI@CDs' potency as an effective anti-A neurotoxin agent.
引用
收藏
页数:9
相关论文
共 43 条
[1]  
Alzheimers Association, 2015, Alzheimers Dement, V11, P332
[2]   Charge Dependent Retardation of Amyloid β Aggregation by Hydrophilic Proteins [J].
Assarsson, Anna ;
Hellstrand, Erik ;
Cabaleiro-Lago, Celia ;
Linse, Sara .
ACS CHEMICAL NEUROSCIENCE, 2014, 5 (04) :266-274
[3]   SOLUTION STRUCTURES OF BETA PEPTIDE AND ITS CONSTITUENT FRAGMENTS - RELATION TO AMYLOID DEPOSITION [J].
BARROW, CJ ;
ZAGORSKI, MG .
SCIENCE, 1991, 253 (5016) :179-182
[4]   Insight into the kinetic of amyloid β(1-42) peptide self-aggregation:: Elucidation of inhibitors' mechanism of action [J].
Bartolini, Manuela ;
Bertucci, Carlo ;
Bolognesi, Maria Laura ;
Cavalli, Andrea ;
Melchiorre, Carlo ;
Andrisano, Vincenza .
CHEMBIOCHEM, 2007, 8 (17) :2152-2161
[5]   Small-molecule conversion of toxic oligomers to nontoxic β-sheet-rich amyloid fibrils [J].
Bieschke, Jan ;
Herbst, Martin ;
Wiglenda, Thomas ;
Friedrich, Ralf P. ;
Boeddrich, Annett ;
Schiele, Franziska ;
Kleckers, Daniela ;
del Amo, Juan Miguel Lopez ;
Gruening, Bjoern A. ;
Wang, Qinwen ;
Schmidt, Michael R. ;
Lurz, Rudi ;
Anwyl, Roger ;
Schnoegl, Sigrid ;
Faendrich, Marcus ;
Frank, Ronald F. ;
Reif, Bernd ;
Guenther, Stefan ;
Walsh, Dominic M. ;
Wanker, Erich E. .
NATURE CHEMICAL BIOLOGY, 2012, 8 (01) :93-101
[6]   Methionine oxidation inhibits assembly and promotes disassembly of apolipoprotein C-II amyloid fibrils [J].
Binger, Katrina J. ;
Griffin, Michael D. W. ;
Howlett, Geoffrey J. .
BIOCHEMISTRY, 2008, 47 (38) :10208-10217
[7]   Proliferation of amyloid-β42 aggregates occurs through a secondary nucleation mechanism [J].
Cohen, Samuel I. A. ;
Linse, Sara ;
Luheshi, Leila M. ;
Hellstrand, Erik ;
White, Duncan A. ;
Rajah, Luke ;
Otzen, Daniel E. ;
Vendruscolo, Michele ;
Dobson, Christopher M. ;
Knowles, Tuomas P. J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (24) :9758-9763
[8]   Dichlorodihydrofluorescein and dihydrorhodamine 123 are sensitive indicators of peroxynitrite in vitro: Implications for intracellular measurement of reactive nitrogen and oxygen species [J].
Crow, JP .
NITRIC OXIDE-BIOLOGY AND CHEMISTRY, 1997, 1 (02) :145-157
[9]   Protein carbonyl groups as biomarkers of oxidative stress [J].
Dalle-Donne, I ;
Rossi, R ;
Giustarini, D ;
Milzani, A ;
Colombo, R .
CLINICA CHIMICA ACTA, 2003, 329 (1-2) :23-38
[10]   Chemically Induced Fluorescence Switching of Carbon-Dots and Its Multiple Logic Gate Implementation [J].
Dhenadhayalan, Namasivayam ;
Lin, King-Chuen .
SCIENTIFIC REPORTS, 2015, 5