Molecular grafting on silicon anodes: artificial Solid-Electrolyte Interphase and surface stabilization

被引:21
作者
Dalla Corte, Daniel Alves [1 ,3 ]
Gouget-Laemme, Anne Chantal [1 ]
Lahlil, Khalid [1 ]
Caillon, Georges [2 ]
Jordy, Christian [2 ]
Chazalviel, Jean-Noel [1 ]
Gacoin, Thierry [1 ]
Rosso, Michel [1 ]
Ozanam, Francois [1 ]
机构
[1] Ecole Polytech, CNRS, Phys Matiere Condensee, F-91128 Palaiseau, France
[2] SAFT, 111 Bld Alfred Daney, F-33074 Bordeaux, France
[3] Coll France, Chim Solide & Energie, 11 Pl Marcelin Berthelot, F-75005 Paris, France
关键词
LITHIUM-ION BATTERIES; THIN-FILM ELECTRODE; DIAZONIUM CHEMISTRY; AMORPHOUS-SILICON; NATURAL GRAPHITE; MULTILAYERS; PERFORMANCE; SI; SPECTROSCOPY; LITHIATION;
D O I
10.1016/j.electacta.2016.03.105
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Silicon electrodes represent a great potential on increasing the energy density of Li-ion batteries, but stabilization during cycling is an important issue to be solved for enabling a reliable application. Such stabilization has been sought for by surface grafting of hydrogenated amorphous silicon (a-Si:H) electrodes. Grafting a molecular monolayer of carboxydecyl moieties (acid grafting) or poly( oxoethylene) (PEG) chains decreases the irreversible capacity and stabilizes the solid-electrolyte interphase (SEI) on a-Si: H. FTIR spectroscopy confirms a breathing behavior of the SEI layer at each step of charge/discharge through in-situ experiments, but also shows that acid grafting reduces this behavior to a large extent. In this way, acid grafting decreases the amount of charge irreversibly consumed for the formation of a spontaneous SEI and stabilizes the SEI along the electrochemical cycles. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:70 / 77
页数:8
相关论文
共 36 条
[1]   Progression of Solid Electrolyte Interphase Formation on Hydrogenated Amorphous Silicon Anodes for Lithium-Ion Batteries [J].
Arreaga-Salas, David E. ;
Sra, Amandeep K. ;
Roodenko, Katy ;
Chabal, Yves J. ;
Hinkle, Christopher L. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (16) :9072-9077
[2]   Advances on the use of diazonium chemistry for functionalization of materials used in energy storage systems [J].
Assresahegn, Birhanu Desalegn ;
Brousse, Thierry ;
Belanger, Daniel .
CARBON, 2015, 92 :362-381
[3]   Electrografting: a powerful method for surface modification [J].
Belanger, Daniel ;
Pinson, Jean .
CHEMICAL SOCIETY REVIEWS, 2011, 40 (07) :3995-4048
[4]   High-performance lithium battery anodes using silicon nanowires [J].
Chan, Candace K. ;
Peng, Hailin ;
Liu, Gao ;
McIlwrath, Kevin ;
Zhang, Xiao Feng ;
Huggins, Robert A. ;
Cui, Yi .
NATURE NANOTECHNOLOGY, 2008, 3 (01) :31-35
[5]   Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes [J].
Chan, Candace K. ;
Ruffo, Riccardo ;
Hong, Seung Sae ;
Cui, Yi .
JOURNAL OF POWER SOURCES, 2009, 189 (02) :1132-1140
[6]  
Chehimi M.M., 2012, Aryl diazonium salts: new coupling agents in polymer and surface science
[7]   Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode [J].
Choi, Nam-Soon ;
Yew, Kyoung Han ;
Lee, Kyu Youl ;
Sung, Minseok ;
Kim, Ho ;
Kim, Sung-Soo .
JOURNAL OF POWER SOURCES, 2006, 161 (02) :1254-1259
[8]   Photoreactivity of unsaturated compounds with hydrogen-terminated silicon(111) [J].
Cicero, RL ;
Linford, MR ;
Chidsey, CED .
LANGMUIR, 2000, 16 (13) :5688-5695
[9]   Spectroscopic Insight into Li-Ion Batteries during Operation: An Alternative Infrared Approach [J].
Dalla Corte, Daniel Alves ;
Caillon, Georges ;
Jordy, Christian ;
Chazalviel, Jean-Noel ;
Rosso, Michel ;
Ozanam, Francois .
ADVANCED ENERGY MATERIALS, 2016, 6 (02)
[10]   Characterization of lithium alkyl carbonates by X-ray photoelectron spectroscopy:: Experimental and theoretical study [J].
Dedryvère, R ;
Gireaud, L ;
Grugeon, S ;
Laruelle, S ;
Tarascon, JM ;
Gonbeau, D .
JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (33) :15868-15875