Asymptotic behavior of solutions to a class of nonlocal non-autonomous diffusion equations

被引:0
作者
Bezerra, F. D. M. [1 ]
Nascimento, M. J. D. [2 ]
da Silva, S. H. [3 ]
机构
[1] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
[2] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
[3] Univ Fed Campina Grande, Unidade Acad Matemat, BR-58051900 Campina Grande, PB, Brazil
基金
巴西圣保罗研究基金会;
关键词
pullback attractors; nonlocal diffusion equations; non-autonomous equations; evolution process; NONHOMOGENEOUS EQUILIBRIA; GLOBAL ATTRACTORS; CONTINUITY; DYNAMICS;
D O I
10.1002/mma.3369
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
where Omega is a bounded smooth domain in R-N, N >= 1, beta is a positive constant, the coefficient a is a continuous bounded function on R, and K is an integral operator with symmetric kernel. (Ku) (x) := f(RN) J(x,y)u(y)dy, being J a non-negative function continuously differentiable on R-N x R-N and f(RN) J(, y)dy = 1. We prove the existence of global pullback attractor, and we exhibit a functional to evolution process generated by this problem that decreases along of solutions. Assuming the parameter. is small enough, we show that the origin is locally pullback asymptotically stable. Copyright (C) 2014 John Wiley & Sons, Ltd.
引用
收藏
页码:4317 / 4329
页数:13
相关论文
共 21 条
  • [1] Existence and continuity of global attractors and nonhomogeneous equilibria for a class of evolution equations with non local terms
    Bezerra, Flank D. M.
    Pereira, Antonio L.
    da Silva, Severino H.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2012, 396 (02) : 590 - 600
  • [2] A non-autonomous strongly damped wave equation: Existence and continuity of the pullback attractor
    Caraballo, Tomas
    Carvalho, Alexandre N.
    Langa, Jose A.
    Rivero, Felipe
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (06) : 2272 - 2283
  • [3] Carvalho A, 2012, Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems
  • [4] Asymptotic behavior for nonlocal diffusion equations
    Chasseigne, Emmanuel
    Chaves, Manuela
    Rossi, Julio D.
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (03): : 271 - 291
  • [5] Chepyzhov V. V., 2002, C PUBLICATIONS, V49
  • [6] A nonlocal diffusion equation whose solutions develop a free boundary
    Cortazar, C
    Elgueta, M
    Rossi, JD
    [J]. ANNALES HENRI POINCARE, 2005, 6 (02): : 269 - 281
  • [7] How to approximate the heat equation with neumann boundary conditions by nonlocal diffusion problems
    Cortazar, Carmen
    Elgueta, Manuel
    Rossi, Julio D.
    Wolanski, Noemi
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2008, 187 (01) : 137 - 156
  • [8] Daleckii JuL., 1974, STABILITY SOLUTIONS, V43, DOI DOI 10.1090/MMONO/043
  • [9] Travelling fronts in non-local evolution equations
    DeMasi, A
    Gobron, T
    Presutti, E
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1995, 132 (02) : 143 - 205
  • [10] A nonlocal convection-diffusion equation
    Ignat, Liviu I.
    Rossi, Julio D.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 251 (02) : 399 - 437