The Dirichlet problem for the fractional p-Laplacian evolution equation

被引:57
作者
Luis Vazquez, Juan [1 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, E-28049 Madrid, Spain
关键词
Nonlinear evolutions; p-Laplacian equation; Fractional diffusion; POROUS-MEDIUM EQUATION; DEGENERATE DIFFUSION-EQUATIONS; NONLOCAL MINIMAL-SURFACES; ASYMPTOTIC-BEHAVIOR; BOUNDED DOMAINS; NONLINEAR DIFFUSION; HEAT-EQUATION; OPERATORS; REGULARITY; PRESSURE;
D O I
10.1016/j.jde.2015.12.033
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a model of fractional diffusion involving a natural nonlocal version of the p-Laplacian operator. We study the Dirichlet problem posed in a bounded domain Omega of R-N with zero data outside of Omega, for which the existence and uniqueness of strong nonnegative solutions is proved, and a number of quantitative properties are established. A main objective is proving the existence of a special separate variable solution U(x, t) = t(-1/(p-2)) F(x), called the friendly giant, which produces a universal upper bound and explains the large-time behaviour of all nontrivial nonnegative solutions in a sharp way. Moreover, the spatial profile F of this solution solves an interesting nonlocal elliptic problem. We also prove everywhere positivity of nonnegative solutions with any nontrivial data, a property that separates this equation from the standard p-Laplacian equation. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:6038 / 6056
页数:19
相关论文
共 63 条
  • [1] [Anonymous], 1973, Operateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert
  • [2] [Anonymous], 2009, CAMBRIDGE STUD ADV M
  • [3] [Anonymous], 2006, OXFORD LECT SERIES M
  • [4] [Anonymous], J EUR MATH SOC JEMS
  • [5] [Anonymous], 1993, DEGENERATE PARABOLIC, DOI DOI 10.1007/978-1-4612-0895-2
  • [6] [Anonymous], 2012, NONLINEAR PARTIAL DI
  • [7] LARGE TIME BEHAVIOR OF SOLUTIONS OF THE POROUS-MEDIUM EQUATION IN BOUNDED DOMAINS
    ARONSON, DG
    PELETIER, LA
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 1981, 39 (03) : 378 - 412
  • [8] BENILAN P, 1991, LECT NOTES PURE APPL, V135, P41
  • [9] Benilan P., 1981, AM J MATH S, P23
  • [10] Bertoin J., 1996, Cambridge Tracts in Mathematics, V121