HANKEL OPERATORS, INVARIANT SUBSPACES, AND CYCLIC VECTORS IN THE DRURY-ARVESON SPACE

被引:17
作者
Richter, Stefan [1 ]
Sunkes, James [1 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
关键词
DIRICHLET SPACE; BERGMAN SPACE; FORMULA;
D O I
10.1090/proc/12922
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We show that every nonzero invariant subspace of the Drury-Arveson space H-d(2) of the unit ball of C-d is an intersection of kernels of little Hankel operators. We use this result to show that if f and 1/f is an element of H-d(2), then f is cyclic in H-d(2).
引用
收藏
页码:2575 / 2586
页数:12
相关论文
共 19 条
[1]  
Agler Jim, 2002, GRADUATE STUDIES MAT, V44
[2]   BILINEAR FORMS ON THE DIRICHLET SPACE [J].
Arcozzi, Nicola ;
Rochberg, Richard ;
Sawyer, Eric ;
Wick, Brett D. .
ANALYSIS & PDE, 2010, 3 (01) :21-47
[3]  
Arveson W, 2000, J REINE ANGEW MATH, V522, P173
[4]   Harmonic functions of maximal growth: Invertibility and cyclicity in Bergman spaces [J].
Borichev, A ;
Hedenmalm, H .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 10 (04) :761-796
[5]   On Weighted Toeplitz, Big Hankel Operators and Carleson Measures [J].
Cascante, Carme ;
Fabrega, Joan ;
Ortega, Joaquin M. .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2010, 66 (04) :495-528
[6]   FACTORIZATION THEOREMS FOR HARDY SPACES IN SEVERAL VARIABLES [J].
COIFMAN, RR ;
ROCHBERG, R ;
WEISS, G .
ANNALS OF MATHEMATICS, 1976, 103 (03) :611-635
[7]   THE CORONA THEOREM FOR THE DRURY-ARVESON HARDY SPACE AND OTHER HOLOMORPHIC BESOV-SOBOLEV SPACES ON THE UNIT BALL IN Cn [J].
Costea, Serban ;
Sawyer, Eric T. ;
Wick, Brett D. .
ANALYSIS & PDE, 2011, 4 (04) :499-550
[8]  
Fang QL, 2013, P AM MATH SOC, V141, P363
[9]  
Joaquin M, 2000, MATH Z, V235, P53, DOI 10.1007/s002090000123. MR1785071 (2001i:46033)
[10]   The curious history of Faa di Bruno's formula [J].
Johnson, WP .
AMERICAN MATHEMATICAL MONTHLY, 2002, 109 (03) :217-234