Line roughness estimation and Poisson denoising in scanning electron microscope images using deep learning

被引:23
作者
Chaudhary, Narendra [1 ]
Savari, Serap A. [1 ]
Yeddulapalli, Sai S. [1 ]
机构
[1] Texas A&M Univ, College Stn, TX 77843 USA
来源
JOURNAL OF MICRO-NANOLITHOGRAPHY MEMS AND MOEMS | 2019年 / 18卷 / 02期
关键词
line edge roughness; deep learning; deep convolutional neural networks; SURFACES; SPECTRUM;
D O I
10.1117/1.JMM.18.2.024001
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose the use of deep supervised learning for the estimation of line edge roughness (LER) and line width roughness (LWR) in low-dose scanning electron microscope (SEM) images. We simulate a supervised learning dataset of 100,800 SEM rough line images constructed by means of the Thorsos method and the ARTIMAGEN library developed by the National Institute of Standards and Technology. We also devise two separate deep convolutional neural networks called SEMNet and EDGENet, each of which has 17 convolutional layers, 16 batch normalization layers, and 16 dropout layers. SEMNet performs the Poisson denoising of SEM images, and it is trained with a dataset of simulated noisy-original SEM image pairs. EDGENet directly estimates the edge geometries from noisy SEM images, and it is trained with a dataset of simulated noisy SEM image-edge array pairs. SEMNet achieved considerable improvements in peak signal-to-noise ratio as well as the best LER/LWR estimation accuracy compared with standard image denoisers. EDGENet offers excellent LER and LWR estimation as well as roughness spectrum estimation. (C) 2019 Society of Photo-Optical Instrumentation Engineers (SPIE)
引用
收藏
页数:16
相关论文
共 41 条
[11]   Determination of optimal parameters for CD-SEM measurement of line edge roughness [J].
Bunday, BD ;
Bishop, M ;
McCormack, DW ;
Villarrubia, JS ;
Vladar, AE ;
Dixson, R ;
Vorburger, TV ;
Orji, NG ;
Allgair, JA .
METROLOGY, INSPECTION, AND PROCESS CONTROL FOR MICROLITHOGRAPHY XVIII, PTS 1 AND 2, 2004, 5375 :515-533
[12]   Adaptive wavelet thresholding for image denoising and compression [J].
Chang, SG ;
Yu, B ;
Vetterli, M .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2000, 9 (09) :1532-1546
[13]   Automated Rough Line Edge Estimation from SEM Images using Deep Convolutional Neural Networks [J].
Chaudhary, Narendra ;
Savari, Serap A. ;
Yeddulapalli, S. S. .
PHOTOMASK TECHNOLOGY 2018, 2018, 10810
[14]   Deep Supervised Learning to Estimate True Rough Line Images From SEM Images [J].
Chaudhary, Narendra ;
Savari, Serap A. ;
Yeddulapalli, S. S. .
34TH EUROPEAN MASK AND LITHOGRAPHY CONFERENCE, 2018, 10775
[15]  
Chollet F., 2018, Towards Data Science
[16]  
Choromanska A, 2015, JMLR WORKSH CONF PRO, V38, P192
[17]   Simulated SEM Images for Resolution Measurement [J].
Cizmar, P. ;
Vladar, A. E. ;
Ming, B. ;
Postek, M. T. .
SCANNING, 2008, 30 (05) :381-391
[18]   Quantification of line-edge roughness of photoresists. II. Scaling and fractal analysis and the best roughness descriptors [J].
Constantoudis, V ;
Patsis, GP ;
Tserepi, A ;
Gogolides, E .
JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2003, 21 (03) :1019-1026
[19]  
Dauphin YN, 2014, ADV NEUR IN, V27
[20]   Stochastic effects in EUV Lithography [J].
De Bisschop, P. ;
Hendrickx, E. .
EXTREME ULTRAVIOLET (EUV) LITHOGRAPHY IX, 2018, 10583