Self-confined beams in erbium-doped lithium niobate

被引:11
作者
Alonzo, M. [1 ,2 ]
Pettazzi, F. [1 ,2 ]
Bazzan, M. [3 ,4 ]
Argiolas, N. [3 ,4 ]
Ciampolillo, M. V. [3 ,4 ]
Batheni, S. Heidari [1 ,2 ]
Sada, C. [3 ,4 ]
Wolfersberger, D. [5 ,6 ]
Petris, A. [7 ]
Vlad, V. I. [7 ]
Fazio, E. [1 ,2 ]
机构
[1] Univ Roma La Sapienza, Energet Dept, I-00161 Rome, Italy
[2] CNISM, I-00161 Rome, Italy
[3] Univ Padua, Phys Dept G Galilei, I-35122 Padua, Italy
[4] CNISM, I-35122 Padua, Italy
[5] SUPELEC, LMOPS Lab, F-57070 Metz, France
[6] Univ Paul Verlaine, F-57070 Metz, France
[7] Natl Inst Laser Plasma & Radiat Phys, Dept Lasers, RO-077125 Bucharest, Romania
关键词
spatial solitons; soliton waveguide; lithium niobate; photorefractivity; erbium; active medium; nonlinear optics; integrated optics; WAVE-GUIDES; SPATIAL SOLITONS; LINBO3; CRYSTALS; ER-LINBO3; BRIGHT; DARK; ER;
D O I
10.1088/2040-8978/12/1/015206
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We experimentally investigate the formation of self-confined beams in lithium niobate crystals which are doped in the bulk with erbium. Samples have been grown by the Czochralski method with erbium nominal concentrations varying in the range 0.0-0.7 mol% in the melt. The speeds of beam confinement depend on the applied bias and on the beam intensity, as expected, but on the doping level as well. The erbium incorporation influences both the electro-optic coefficient and the photovoltaic field. A very general dependence of the confined beam waist on the refractive index change was experimentally derived, valid now for every lithium niobate crystal, independent on its growing procedure or doping.
引用
收藏
页数:6
相关论文
共 19 条
[1]   Modeling and characterization of border domain effects in periodically poled lithium niobate crystals grown by the off-center Czochralski technique [J].
Autizi, E ;
Capobianco, AD ;
Pigozzo, F ;
Argiolas, N ;
Bazzan, M ;
Cattaruzza, E ;
Mazzoldi, P ;
Sada, C .
OPTICAL AND QUANTUM ELECTRONICS, 2006, 38 (1-3) :177-185
[2]   Photorefractive saturable Kerr-type nonlinearity in photovoltaic crystals [J].
Bian, S ;
Frejlich, J ;
Ringhofer, KH .
PHYSICAL REVIEW LETTERS, 1997, 78 (21) :4035-4038
[3]   Spatial solitons in a photorefractive medium sustaining second-harmonic generation [J].
Boardman, AD ;
Ilecki, W ;
Liu, Y .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2002, 19 (04) :832-838
[4]   SPATIAL SOLITONS IN PHOTOREFRACTIVE BI12TIO20 WITH DRIFT MECHANISM OF NONLINEARITY [J].
CASTILLO, MDI ;
AGUILAR, PAM ;
SANCHEZMONDRAGON, JJ ;
STEPANOV, S ;
VYSLOUKH, V .
APPLIED PHYSICS LETTERS, 1994, 64 (04) :408-410
[5]   Transient dark photovoltaic spatial solitons and induced guiding in slab LiNbO3 waveguides [J].
Chauvet, M ;
Chauvin, S ;
Maillotte, H .
OPTICS LETTERS, 2001, 26 (17) :1344-1346
[6]   OPTICALLY INDUCED CHANGE OF REFRACTIVE INDICES IN LINBO3 AND LITAO3 [J].
CHEN, FS .
JOURNAL OF APPLIED PHYSICS, 1969, 40 (08) :3389-&
[7]   BRIGHT, DARK, AND GRAY SPATIAL SOLITON STATES IN PHOTOREFRACTIVE MEDIA [J].
CHRISTODOULIDES, DN ;
CARVALHO, MI .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 1995, 12 (09) :1628-1633
[8]   OBSERVATION OF SELF-TRAPPING OF AN OPTICAL BEAM DUE TO THE PHOTOREFRACTIVE EFFECT [J].
DUREE, GC ;
SHULTZ, JL ;
SALAMO, GJ ;
SEGEV, M ;
YARIV, A ;
CROSIGNANI, B ;
DIPORTO, P ;
SHARP, EJ ;
NEURGAONKAR, RR .
PHYSICAL REVIEW LETTERS, 1993, 71 (04) :533-536
[9]   Screening-photovoltaic bright solitons in lithium niobate and associated single-mode waveguides [J].
Fazio, E ;
Renzi, F ;
Rinaldi, R ;
Bertolotti, M ;
Chauvet, M ;
Ramadan, W ;
Petris, A ;
Vlad, VI .
APPLIED PHYSICS LETTERS, 2004, 85 (12) :2193-2195
[10]   HOLOGRAPHIC STORAGE IN ELECTROOPTIC CRYSTALS .1. STEADY-STATE [J].
KUKHTAREV, NV ;
MARKOV, VB ;
ODULOV, SG ;
SOSKIN, MS ;
VINETSKII, VL .
FERROELECTRICS, 1979, 22 (3-4) :949-960