SAR EDDY DETECTION USING MASK-RCNN AND EDGE ENHANCEMENT

被引:11
作者
Zhang, Di [1 ]
Gade, Martin [2 ]
Zhang, Jianwei [1 ]
机构
[1] Univ Hamburg, Fachbereich Informat, Hamburg, Germany
[2] Univ Hamburg, Inst Meereskunde, Hamburg, Germany
来源
IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM | 2020年
基金
美国国家科学基金会;
关键词
SAR imagery; eddy detection; deep learning; Mask R-CNN;
D O I
10.1109/IGARSS39084.2020.9323808
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The objective of this research is to detect ocean eddies automatically on Synthetic Aperture Radar (SAR) images. We develop a new approach using Mask Region-based Convolutional Neural Networks (Mask R-CNN) and edge enhancement. First, we use Canny edge detector to extract a wide range of edges in SAR images. Then we put both the edge detection results and the corresponding original images into a Mask R-CNN based model for learning, thereby strengthening edge information. The proposed framework has been trained on a sample dataset of Sentinel-1A SAR-C imagery of the Western Mediterranean Sea. Experimental results revealed that the proposed method improved the performance by 2.3% on the MS COCO metrics compared to the method without edge enhancement.
引用
收藏
页码:1604 / 1607
页数:4
相关论文
共 12 条
[1]   Soft-NMS - Improving Object Detection With One Line of Code [J].
Bodla, Navaneeth ;
Singh, Bharat ;
Chellappa, Rama ;
Davis, Larry S. .
2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, :5562-5570
[2]   Deep learning with multi-scale feature fusion in remote sensing for automatic oceanic eddy detection [J].
Du, Yanling ;
Song, Wei ;
He, Qi ;
Huang, Dongmei ;
Liotta, Antonio ;
Su, Chen .
INFORMATION FUSION, 2019, 49 :89-99
[3]   A daily global mesoscale ocean eddy dataset from satellite altimetry [J].
Faghmous, James H. ;
Frenger, Ivy ;
Yao, Yuanshun ;
Warmka, Robert ;
Lindell, Aron ;
Kumar, Vipin .
SCIENTIFIC DATA, 2015, 2
[4]  
Gade M, 2018, ADV SAR REMOTE SENSI
[5]  
Glorot X., 2010, P 13 INT C ARTIFICIA, P249, DOI DOI 10.1109/LGRS.2016.2565705
[6]  
He KM, 2017, IEEE I CONF COMP VIS, P2980, DOI [10.1109/TPAMI.2018.2844175, 10.1109/ICCV.2017.322]
[7]   Deep Residual Learning for Image Recognition [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, :770-778
[8]  
Huang DM, 2017, IEEE INT C NETW SENS, P673, DOI 10.1109/ICNSC.2017.8000171
[9]   Microsoft COCO: Common Objects in Context [J].
Lin, Tsung-Yi ;
Maire, Michael ;
Belongie, Serge ;
Hays, James ;
Perona, Pietro ;
Ramanan, Deva ;
Dollar, Piotr ;
Zitnick, C. Lawrence .
COMPUTER VISION - ECCV 2014, PT V, 2014, 8693 :740-755
[10]   Feature Pyramid Networks for Object Detection [J].
Lin, Tsung-Yi ;
Dollar, Piotr ;
Girshick, Ross ;
He, Kaiming ;
Hariharan, Bharath ;
Belongie, Serge .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :936-944