Preparation and Electrochemical Characterization of Organic-Inorganic Hybrid Poly(Vinylidene Fluoride)-SiO2 Cation-Exchange Membranes by the Sol-Gel Method Using 3-Mercapto-Propyl-Triethoxyl-Silane

被引:3
|
作者
Li, Yanhong [1 ,2 ]
Li, Zhiwei [1 ]
Li, Yanjuan [1 ,2 ]
Guan, Wenxue [1 ,2 ]
Zheng, Yangyang [1 ,2 ]
Zhang, Xuemin [1 ,2 ]
Wang, Sanfan [1 ,2 ]
机构
[1] Lanzhou Jiaotong Univ, Sch Environm & Municipal Engn, 88 Anning West Rd, Lanzhou 730070, Gansu, Peoples R China
[2] Lanzhou Jiaotong Univ, Sch Environm & Municipal Engn, Minist Educ, Engn Res Ctr Water Resources Utilizat Cold & Drou, 88 Anning West Rd, Lanzhou 730070, Gansu, Peoples R China
基金
中国国家自然科学基金;
关键词
cation-exchange membrane; polyvinylidene fluoride; oxidative stability; membrane resistance; PHOSPHOTUNGSTIC ACID MEMBRANE; POWER-GENERATION; ENERGY EFFICIENCY; WATER; OSMOSIS; PERMEABILITY; DEGRADATION; PERFORMANCE; DENSITY;
D O I
10.3390/ma12193265
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A new synthesis method for organic-inorganic hybrid Poly(vinylidene fluoride)-SiO2 cation-change membranes (CEMs) is proposed. This method involves mixing tetraethyl orthosilicate (TEOS) and 3-mercapto-propyl-triethoxy-silane (MPTES) into a polyvinylidene fluoride (PVDF) sol-gel solution. The resulting slurry was used to prepare films, which were immersed in 0.01 M HCl, which caused hydrolysis and polycondensation between the MPTES and TEOS. The resulting Si-O-Si polymers chains intertwined and/or penetrated the PVDF skeleton, significantly improving the mechanical strength of the resulting hybrid PVDF-SiO2 CEMs. The -SH functional groups of MPTES oxidized to-SO3H, which contributed to the excellent permeability of these CEMs. The surface morphology, hybrid structure, oxidative stability, and physicochemical properties (IEC, water uptake, membrane resistance, membrane potential, transport number, and selective permittivity) of the CEMs obtained in this work were characterized using scanning electron microscope and Fourier transform infrared spectroscopy, as well as electrochemical testing. Tests to analyze the oxidative stability, water uptake, membrane potential, and selective permeability were also performed. Our organic-inorganic hybrid PVDF-SiO2 CEMs demonstrated higher oxidative stability and lower resistance than commercial Ionsep-HC-C membranes with a hydrocarbon structure. Thus, the synthesis method described in this work is very promising for the production of very efficient CEMs. In addition, the physical and electrochemical properties of the PVDF-SiO2 CEMs are comparable to the Ionsep-HC-C membranes. The electrolysis of the concentrated CoCl2 solution performed using PVDF-SiO2-6 and Ionsep-HC-C CEMs showed that at the same current density, Co2+ production, and current efficiency of the PVDF-SiO2-6 CEM membrane were slightly higher than those obtained using the Ionsep-HC-C membrane. Therefore, our novel membrane might be suitable for the recovery of cobalt from concentrated CoCl2 solutions.
引用
收藏
页数:19
相关论文
共 1 条
  • [1] Preparation of organic-inorganic hybrid cation-exchange membranes via blending method and their electrochemical characterization
    Zuo, Xingtao
    Yu, Shuili
    Xu, Xia
    Bao, Ruiling
    Xu, Jun
    Qu, Wenming
    JOURNAL OF MEMBRANE SCIENCE, 2009, 328 (1-2) : 23 - 30